(本小題滿(mǎn)分13分)已知兩定點(diǎn),平面上動(dòng)點(diǎn)滿(mǎn)足
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)過(guò)點(diǎn)的直線(xiàn)交于兩點(diǎn),且,當(dāng)時(shí),求直線(xiàn)的斜率的取值范圍.
(Ⅰ)
(Ⅱ)
(Ⅰ)∵
的軌跡是以為焦點(diǎn),實(shí)軸長(zhǎng)為2的雙曲線(xiàn)的右支,
∴軌跡方程為.                                (3分)
(Ⅱ)由題意可知的斜率存在,且,
設(shè)的方程為
,由得:;        (5分)
聯(lián)立,消去,整理得: (*)
是方程(*)在區(qū)間內(nèi)的兩個(gè)不等實(shí)根得
,化簡(jiǎn)得,即;          (8分)
,整理可得:
,                                             (10分)
,由對(duì)勾函數(shù)的性質(zhì)可知,在區(qū)間為增函數(shù),
, 
綜上得.           (13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
設(shè)動(dòng)點(diǎn)P到點(diǎn)A(-l,0)和B(1,0)的距離分別為d1d2
APB=2θ,且存在常數(shù)λ(0<λ<1=,使得d1d2 sin2θ=λ.
(1)證明:動(dòng)點(diǎn)P的軌跡C為雙曲線(xiàn),并求出C的方程;
(2)過(guò)點(diǎn)B作直線(xiàn)交雙曲線(xiàn)C的右支于M、N
點(diǎn),試確定λ的范圍,使·=0,其中點(diǎn)
O為坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,A點(diǎn)的坐標(biāo)為(3,0),BC邊長(zhǎng)為2,且BCy軸上的區(qū)間[-3,3]上滑動(dòng).
(1)求△ABC外心的軌跡方程;
(2)設(shè)直線(xiàn)ly=3xb與(1)的軌跡交于E,F兩點(diǎn),原點(diǎn)到直線(xiàn)l的距離為d,求 的最大值.并求出此時(shí)b的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
已知曲線(xiàn)D軸于A、B兩點(diǎn),曲線(xiàn)C是以AB為長(zhǎng)軸,離心率的橢圓。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)M是直線(xiàn)上的任一點(diǎn),以M為直徑的圓交曲線(xiàn)DP,Q兩點(diǎn)(為坐標(biāo)原點(diǎn))。若直線(xiàn)PQ與橢圓C交于G,H兩點(diǎn),交x軸于點(diǎn)E,且。試求此時(shí)弦PQ的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率.直線(xiàn):與橢圓C相交于兩點(diǎn), 且
(1)求橢圓C的方程
(2)點(diǎn)P(,0),A、B為橢圓C上的動(dòng)點(diǎn),當(dāng)時(shí),求證:直線(xiàn)AB恒過(guò)一個(gè)定點(diǎn).并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓和雙曲線(xiàn)的公共焦點(diǎn)為,是兩曲線(xiàn)的一個(gè)公共點(diǎn),則cos的值等于(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓 (a > b > 0) 且滿(mǎn)足a,若離心率為e,則e2 + 的最小值為     。     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線(xiàn)C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),過(guò)點(diǎn)的直線(xiàn)l與拋物線(xiàn)C相交于A,B兩點(diǎn)。若AB的中點(diǎn)為,則弦的長(zhǎng)為_(kāi)________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

我們可以運(yùn)用下面的原理解決一些相關(guān)圖形的面積問(wèn)題:如果與一固定直線(xiàn)平行的直線(xiàn)被甲、乙兩個(gè)封閉圖形所截得線(xiàn)段的比為定值,那么甲的面積是乙的面積的倍,你可以從給出的簡(jiǎn)單圖形①(甲:大矩形、乙:小矩形)、②(甲:大直角三角形乙:小直角三角形)中體會(huì)這個(gè)原理,現(xiàn)在圖③中的曲線(xiàn)分別是,運(yùn)用上面的原理,圖③中橢圓的面積為                

查看答案和解析>>

同步練習(xí)冊(cè)答案