精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓)過點,且橢圓的離心率為

1)求橢圓的方程;

2)若動點在直線上,過作直線交橢圓兩點,且為線段中點,再過作直線.求直線是否恒過定點,如果是則求出該定點的坐標,不是請說明理由。

【答案】(1;(2)直線恒過定點

【解析】試題分析:本題主要考查橢圓的標準方程以及幾何性質、直線的標準方程、直線與橢圓的位置關系、韋達定理等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,利用點在橢圓上和離心率得到方程組,解出ab的值,從而得到橢圓的標準方程;第二問,需要對直線MN的斜率是否存在進行討論,()若存在點PMN上,設出直線MN的方程,由于直線MN與橢圓相交,所以兩方程聯立,得到兩根之和,結合中點坐標公式,得到直線MN的斜率,由于直線MN與直線垂直,從而得到直線的斜率,因為直線也過點P,寫出直線的方程,經過整理,即可求出定點,()若直線MN的斜率不存在,則直線MN即為,而直線x軸,經驗證直線,也過上述定點,所以綜上所述,有定點.

1)因為點在橢圓上,所以, 所以, 1

因為橢圓的離心率為,所以,即, 2

解得, 所以橢圓的方程為4

2)設,

當直線的斜率存在時,設直線的方程為,

,

所以, 因為中點,所以,即

所以, 8

因為直線,所以,所以直線的方程為,

,顯然直線恒過定點10

當直線的斜率不存在時,直線的方程為,此時直線軸,也過點

綜上所述直線恒過定點12

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數a的取值范圍;
(3)證明:對一切x∈(0,+∞),都有l(wèi)nx> 成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l與過點M(- ),N( ,- )的直線垂直,則直線l的傾斜角是( ).
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線方程為x2=2py(p>0),其焦點為F,點O為坐標原點,過焦點F作斜率為k(k≠0)的直線與拋物線交于A,B兩點,過A,B兩點分別作拋物線的兩條切線,設兩條切線交于點M.
(1)求 ;
(2)設直線MF與拋物線交于C,D兩點,且四邊形ACBD的面積為 ,求直線AB的斜率k.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的傾斜角 的余弦值 ,則此直線的斜率是( ).
A.
B.-
C.
D.±

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABCD為正方形,P為平面ABCD外一點,且PA⊥平面ABCD,則平面PAB與平面PBC,平面PAB與平面PAD的位置關系是(
A.平面PAB與平面PAD,PBC垂直
B.它們都分別相交且互相垂直
C.平面PAB與平面PAD垂直,與平面PBC相交但不垂直
D.平面PAB與平面PBC垂直,與平面PAD相交但不垂直

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在正四棱錐P﹣ABCD中,PA= AB,M是BC的中點,G是△PAD的重心,則在平面PAD中經過G點且與直線PM垂直的直線有條.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓 的離心率為, 為橢圓的右焦點, .

(Ⅰ)求橢圓的方程;

(Ⅱ)設為原點, 為橢圓上一點, 的中點為,直線與直線交于點,過,交直線于點,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知全集U=R,集合A={x|x﹣2<0},B={x|﹣1<x<1},求:
(1)A∩B并說明集合A和集合B的關系,
(2)AB.

查看答案和解析>>

同步練習冊答案