【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(2)對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對(duì)一切x∈(0,+∞),都有l(wèi)nx> 成立.

【答案】
(1)解:f(x)=xlnx,

∴f'(x)=lnx+1

當(dāng)x∈(0, ),f′(x)<0,f(x)單調(diào)遞減,

當(dāng)x∈( ,+∞),f′(x)>0,f(x)單調(diào)遞增

①0<t< 時(shí),f(x)min=f( )=﹣ ;

≤t時(shí),f(x)在[t,t+2]上單調(diào)遞增,f(x)min=f(t)=tlnt;

∴f(x)min=


(2)解:2f(x)≥g(x)恒成立,

∴a≤x+ +2lnx恒成立,

令h(x)=x+2lnx+ ,

則h'(x)=1+ = ,

由h'(x)=0,得x1=﹣3,x2=1,

x∈(0,1)時(shí),h'(x)<0;

x∈(1,+∞)時(shí),h'(x)>0.

∴x=1時(shí),h(x)min=1+0+3=4.

∴a≤4.

∴實(shí)數(shù)a的取值范圍是(﹣∞,4]


(3)證明:對(duì)一切x∈(0,+∞),都有l(wèi)nx> 成立,

∴xlnx> ,

∴f(x)>

由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是﹣ ,當(dāng)且僅當(dāng)x= 時(shí)取到.

設(shè)m(x)= ,(x∈(0,+∞)),則m′(x)= ,

∵x∈(0,1)時(shí),m′(x)>0,

x∈(1,+∞)時(shí),m′(x)<0,

∴m(x)max=m(1)=﹣ ,

從而對(duì)一切x∈(0,+∞),lnx> 成立


【解析】(1)求出導(dǎo)函數(shù)f'(x)=lnx+1,對(duì)x分別討論,得出導(dǎo)函數(shù)的正負(fù)區(qū)間,根據(jù)函數(shù)單調(diào)性分別討論t的范圍,求出函數(shù)的最小值;(2)不等式整理為a≤x+ +2lnx恒成立,只需求出右式的最小值即可,構(gòu)造函數(shù)h(x)=x+2lnx+ ,利用求導(dǎo)的方法得出函數(shù)的最小值;(3)根據(jù)不等式的形式可得f(x)> ,只需使f(x)的最小值大于右式的最大值即可,構(gòu)造函數(shù)m(x)= ,利用求導(dǎo)得出函數(shù)的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖:

求分?jǐn)?shù)在的頻率及全班人數(shù);

求分?jǐn)?shù)在之間的頻數(shù),并計(jì)算頻率分布直方圖中間矩形的高;

若要從分?jǐn)?shù)在之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列各組中兩個(gè)函數(shù)是否為同一函數(shù).
(1)f(x)=x2+2x﹣1,g(x)=t2+2t﹣1;
(2)f(x)= , g(x)=x+1;
(3)f(x)= , g(x)=;
(4)f(x)=|3﹣x|+1,g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2lnx﹣a(x2﹣1),a∈R,若當(dāng)x≥1時(shí),f(x)≥0恒成立,則a的取值范圍是(
A.(﹣∞,﹣1]
B.(﹣∞,0]
C.(﹣∞,1]
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間直角坐標(biāo)系中,已知A(3,0,1)和B(1,0,-3),試問
(1)在y軸上是否存在點(diǎn)M,滿足 ?
(2)在y軸上是否存在點(diǎn)M,使△MAB為等邊三角形?若存在,試求出點(diǎn)M坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線y=x+b與曲線 有且只有一個(gè)交點(diǎn),則 的取值范圍是 (
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海濱游樂場出租快艇的收費(fèi)辦法如下:不超過十分鐘收費(fèi)80元;超過十分鐘,超過部分按每分鐘10元收費(fèi)(對(duì)于其中不足一分鐘的部分,若小于0.5分鐘則不收費(fèi),若大于或等于0.5分鐘則按一分鐘收費(fèi)),小茗同學(xué)為該游樂場設(shè)計(jì)了一款收費(fèi)軟件,程序框圖如圖所示,其中x(分鐘)為航行時(shí)間,y(元)為所收費(fèi)用,用[x]表示不大于x的最大整數(shù),則圖中①處應(yīng)填(

A.y=10[x]
B.y=10[x]﹣20
C.y=10[x﹣ ]﹣20
D.y=10[x+ ]﹣20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購買該險(xiǎn)峰種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費(fèi)與其上處度的出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

設(shè)該險(xiǎn)種一續(xù)保人一年內(nèi)出險(xiǎn)次數(shù)與相應(yīng)概率如下:

(1) 求一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)的概率;

(2) 若一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)用,求其保費(fèi)比基本保費(fèi)高出60%的概率;

(3) 求續(xù)保人本年度的平均保費(fèi)與基本保費(fèi)的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)過點(diǎn),且橢圓的離心率為

1)求橢圓的方程;

2)若動(dòng)點(diǎn)在直線上,過作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過作直線.求直線是否恒過定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案