2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+\frac{1}{x}(x>1)}\\{{x}^{2}+1(-1≤x≤1)}\\{2x+3(x<-1)}\end{array}\right.$.
(1)求f{f[f(-2)]}的值;
(2)若f(a)=$\frac{3}{2}$,求a的值.

分析 (1)先求出f(-2)=-1,f[f(-2)]=f(-1)=2,從而ff[f(-2)],由此能求出結(jié)果.
(2)由f(a)=$\frac{3}{2}$,知a>1或-1≤a≤1.由此利用分類討論思想能求出a.

解答 解:(1)∵f(x)=$\left\{\begin{array}{l}{1+\frac{1}{x}(x>1)}\\{{x}^{2}+1(-1≤x≤1)}\\{2x+3(x<-1)}\end{array}\right.$,
∴f(-2)=-1,f[f(-2)]=f(-1)=2,
∴ff[f(-2)]=1+$\frac{1}{2}=\frac{3}{2}$.
(2)∵f(a)=$\frac{3}{2}$,∴a>1或-1≤a≤1.
當(dāng)a>1時,有1+$\frac{1}{a}$=$\frac{3}{2}$,∴a=2;
當(dāng)-1≤a≤1時,a2+1=$\frac{3}{2}$,∴a=±$\frac{\sqrt{2}}{2}$.
∴a=2或a=±$\frac{\sqrt{2}}{2}$.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計算:($\sqrt{3}$-2)0-log2$\sqrt{2}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)定義在R上的函數(shù)f(x)是最小正周期為$\frac{π}{2}$的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)$x∈[0,\frac{π}{2}]$時,0<f(x)<1,當(dāng)x∈(0,$\frac{π}{2}$)且x≠$\frac{π}{4}$時,(x-$\frac{π}{4}$)f'(x)<0,則方程f(x)=cos2x在[-2π,2π]上的根的個數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若不同的兩點A,B到平面α的距離相等,則下列命題中一定正確的是( 。
A.A,B兩點在平面α的同側(cè)B.A,B兩點在平面α的異側(cè)
C.過A,B兩點必有垂直于平面α的平面D.過A,B兩點必有平行于平面α的平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.當(dāng)x∈(0,+∞)時,不等式c2x2-(cx+1)lnx+cx≥0恒成立,則實數(shù)c的取值范圍是[$\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線f(x)=x2-3x+1在點(1,-1)處的切線方程為( 。
A.y=-x-1B.y=xC.y=-xD.y=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)某項試驗的成功率是失敗率的2倍,用隨機(jī)變量Y描述1次試驗的成功次數(shù),則D(Y)=$\frac{2}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(1+logax)=$\sqrt{2}x-1({a>0且a≠1})$.若f(4)=3,則a=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知(x,y)在映射f下的像是(x+y,x-y),則像(2,3)在f下的原像為(2.5,-0.5).

查看答案和解析>>

同步練習(xí)冊答案