14.設某項試驗的成功率是失敗率的2倍,用隨機變量Y描述1次試驗的成功次數(shù),則D(Y)=$\frac{2}{9}$.

分析 設失敗率為p,則成功率為2p.由p+2p=1得p=$\frac{1}{3}$,從而P(Y=0)=$\frac{1}{3}$.P(Y=1)=$\frac{2}{3}$,由此能求出D(Y).

解答 解:設失敗率為p,則成功率為2p.
“Y=0”表示試驗失敗,“Y=1”表示試驗成功,
由p+2p=1得p=$\frac{1}{3}$,
∴P(Y=0)=$\frac{1}{3}$.
P(Y=1)=$\frac{2}{3}$,
∴Y的分布列為:

Y01
P$\frac{1}{3}$$\frac{2}{3}$
E(Y)=0×$\frac{1}{3}+1×\frac{2}{3}$=$\frac{2}{3}$,
D(Y)=($0-\frac{2}{3}$)2×$\frac{1}{3}$+(1-$\frac{2}{3}$)2×$\frac{2}{3}$=$\frac{2}{9}$.
故答案為:$\frac{2}{9}$.

點評 本題考查方差的求法,是中檔題,解題時要認真審題,是中檔題,在歷年高考中都是必考題型之一.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知橢圓Γ:$\frac{{x}^{2}}{4}$+y2=1的左頂點為R,點A(2,1),B(-2,1),O為坐標原點.
(I)若P是橢圓Γ上任意一點,$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,求m2+n2的值;
(II)設Q是橢圓Γ上任意一點,S(6,0),求$\overrightarrow{QS}$•$\overrightarrow{QR}$的取值范圍;
(Ⅲ)設M(x1,y1),N(x2,y2)是橢圓Γ上的兩個動點,滿足kOM•kON=kOA•kOB,試探究△OMN的面積是否為定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在△ABC中,A,B,C所對的邊分別是a,b,c,A=$\frac{2π}{3}$,且bcosC=3ccosB,則$\frac{c}$的值為( 。
A.$\frac{\sqrt{13}-1}{2}$B.$\frac{1+\sqrt{13}}{2}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{14}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1+\frac{1}{x}(x>1)}\\{{x}^{2}+1(-1≤x≤1)}\\{2x+3(x<-1)}\end{array}\right.$.
(1)求f{f[f(-2)]}的值;
(2)若f(a)=$\frac{3}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列各式正確的是( 。
(1)($\frac{cosx}{x}$)′=$\frac{-sinx}{{x}^{2}}$ 
(2)[(x2+x+1)ex]′=(2x+1)ex
(3)($\frac{2x}{{x}^{2}+1}$)′=$\frac{2-2{x}^{2}}{({x}^{2}+1)^{2}}$
(4)(e3x+1)′=3e3x+1
A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.數(shù)列{an}中a1=1,an+1=2an+2.
(1)求證:數(shù)列{an+2}是等比數(shù)列,并求{an}的通項公式;
(2)若bn=n(an+2),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知等比數(shù)列{an}中,${a_1}=1,q=\frac{1}{2},{a_n}=\frac{1}{64}$,則項數(shù)n=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知集合A={x|a-1<x<2a+1},B={x|0<x<3}.
(1)若a=2,求A∪B;
(2)若A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知lg(3a3)-lg(3b3)=9,則$\frac{a}$=1000.

查看答案和解析>>

同步練習冊答案