已知α、β、γ是三個不同的平面,命題“α∥β,且α⊥γβ⊥γ”是真命題,如果把α、β、γ中的任意兩個換成直線,另一個保持不變,在所得的所有新命題中,真命題的個數(shù)是________.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第六章第1課時練習卷(解析版) 題型:解答題
某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),總成本為G(x)(萬元),其中固定成本為2萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本);銷售收入R(x)(萬元)滿足:R(x)=假定該產(chǎn)品產(chǎn)銷平衡,那么根據(jù)上述統(tǒng)計規(guī)律求下列問題.
(1)要使工廠有贏利,產(chǎn)量x應(yīng)控制在什么范圍內(nèi)?
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使贏利最多?
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第5課時練習卷(解析版) 題型:解答題
如圖,底面邊長為a,高為h的正三棱柱ABC-A1B1C1,其中D是AB的中點,E是BC的三等分點.求幾何體BDEA1B1C1的體積.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第4課時練習卷(解析版) 題型:解答題
如圖①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中點.如圖②,將△ABE沿AE折起,使二面角BAEC成直二面角,連結(jié)BC、BD,F是CD的中點,P是棱BC的中點.求證:
圖①圖②
(1)AE⊥BD;
(2)平面PEF⊥平面AECD.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第4課時練習卷(解析版) 題型:解答題
如圖,三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分別是AC,AD上的動點,且=λ(0<λ<1).
(1)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD..
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第3課時練習卷(解析版) 題型:填空題
如圖PA⊥圓O所在平面,AB是圓O的直徑,C是圓O上一點,AE⊥PC,AF⊥PB,給出下列結(jié)論:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命題的是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第3課時練習卷(解析版) 題型:解答題
在正方體ABCD-A1B1C1D1中,E、F分別是CD、A1D1中點.
(1)求證:AB1⊥BF;
(2)求證:AE⊥BF;
(3)棱CC1上是否存在點F,使BF⊥平面AEP,若存在,確定點P的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第八章第2課時練習卷(解析版) 題型:填空題
下列命題中正確的是________.(填序號)
①若直線a不在α內(nèi),則a∥α;
②若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α;
③若l與平面α平行,則l與α內(nèi)任何一條直線都沒有公共點;
④平行于同一平面的兩直線可以相交.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復(fù)習考點引領(lǐng)+技巧點撥第五章第6課時練習卷(解析版) 題型:解答題
設(shè)無窮數(shù)列{an}滿足:?n∈Ν?,an<an+1,an∈N?.記bn=aan,cn=aan+1(n∈N*).
(1)若bn=3n(n∈N*),求證:a1=2,并求c1的值;
(2)若{cn}是公差為1的等差數(shù)列,問{an}是否為等差數(shù)列,證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com