(2008•南京模擬)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為α1=
1
1
,屬于特征值1的一個(gè)特征向量為α2=
3
-2
.求矩陣A,并寫出A的逆矩陣.
分析:根據(jù)特征值的定義可知Aα=λα,利用待定系數(shù)法建立等式關(guān)系,從而可求矩陣A,再利用公式求逆矩陣.
解答:解:由矩陣A屬于特征值6的一個(gè)特征向量為α1=
1
1
可得,
33
cd
1
1
=6
1
1
,即c+d=6;…(2分)
由矩陣A屬于特征值1的一個(gè)特征向量為α2=
3
-2
,可得
33
cd
3
-2
=
3
-2
,即3c-2d=-2,…(4分)
解得
c=2
d=4
即A=
33
24
,…(6分)
A的逆矩陣是
2
3
-
1
2
-
1
3
1
2
.…(8分)
點(diǎn)評(píng):本題主要考查了二階矩陣,以及特征值與特征向量的計(jì)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南京模擬)某電視臺(tái)的一個(gè)智力游戲節(jié)目中,有一道將四本由不同作者所著的外國名著A、B、C、D與它們的作者連線的題目,每本名著只能與一名作者連線,每名作者也只能與一本名著連線.每連對(duì)一個(gè)得3分,連錯(cuò)得-1分,一名觀眾隨意連線,他的得分記作ξ.
(1)求該觀眾得分ξ為非負(fù)的概率;
(2)求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南京模擬)已知復(fù)數(shù)z滿足(2-i)z=5,則z=
2+i
2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南京模擬)如圖所示的流程圖輸出的結(jié)果是
192
192

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•南京模擬)一對(duì)年輕夫婦和其兩歲的孩子做游戲,讓孩子把分別寫有“One”,“World”,“One”,“Dream”的四張卡片隨機(jī)排成一行,若卡片從左到右的順序排成“One  World  One  Dream”,則孩子會(huì)得到父母的獎(jiǎng)勵(lì),那么孩子受到獎(jiǎng)勵(lì)的概率為
1
12
1
12

查看答案和解析>>

同步練習(xí)冊(cè)答案