【題目】已知函數(shù),.

(1)求的單調(diào)區(qū)間;

(2)若上成立,求的取值范圍.

【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2).

【解析】

(1),利用,解得,即可得出單調(diào)區(qū)間.

(2)法一:由,即.令,利用導(dǎo)數(shù)研究其單調(diào)性即可得出.

法二:由,即,令,利用導(dǎo)數(shù)研究其單調(diào)性即可得出.

解:(1),

當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),單調(diào)遞減,

單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)法一:由,即,

,

,單調(diào)遞增,

,

所以有唯一的零點(diǎn),

且當(dāng)時(shí),,即單調(diào)遞減,

當(dāng)時(shí),,即,單調(diào)遞增,

所以,

又因?yàn)?/span>所以

所以,的取值范圍是.

法二:由

,

,因?yàn)?/span>,,

所以存在零點(diǎn)

,則,當(dāng)時(shí),單調(diào)遞減,

當(dāng)時(shí),單調(diào)遞增.

所以,

所以

所以的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)市政府提出的以新舊動(dòng)能轉(zhuǎn)換為主題的發(fā)展戰(zhàn)略,某公司花費(fèi)100萬(wàn)元成本購(gòu)買(mǎi)了1套新設(shè)備用于擴(kuò)大生產(chǎn),預(yù)計(jì)該設(shè)備每年收入100萬(wàn)元,第一年該設(shè)備的各種消耗成本為8萬(wàn)元,且從第二年開(kāi)始每年比上一年消耗成本增加8萬(wàn)元.

1)求該設(shè)備使用x年的總利潤(rùn)y(萬(wàn)元)與使用年數(shù)xxN*)的函數(shù)關(guān)系式(總利潤(rùn)=總收入﹣總成本);

2)這套設(shè)備使用多少年,可使年平均利潤(rùn)最大?并求出年平均利潤(rùn)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),過(guò)點(diǎn)作斜率為的直線與圓交于兩點(diǎn).

(1)若圓心到直線的距離為,求的值;

(2)求線段中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時(shí)間(第周)和市場(chǎng)占有率()的幾組相關(guān)數(shù)據(jù)如下表:

1)根據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

2)根據(jù)上述線性回歸方程,預(yù)測(cè)在第幾周,該款旗艦機(jī)型市場(chǎng)占有率將首次超過(guò)(最后結(jié)果精確到整數(shù)).

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡(jiǎn)稱(chēng)“創(chuàng)城”)活動(dòng)中,教委對(duì)本區(qū)四所高中學(xué)校按各校人數(shù)分層抽樣,隨機(jī)抽查了100人,將調(diào)查情況進(jìn)行整理后制成下表:

學(xué)校

抽查人數(shù)

50

15

10

25

“創(chuàng)城”活動(dòng)中參與的人數(shù)

40

10

9

15

(注:參與率是指:一所學(xué)!皠(chuàng)城”活動(dòng)中參與的人數(shù)與被抽查人數(shù)的比值)假設(shè)每名高中學(xué)生是否參與”創(chuàng)城”活動(dòng)是相互獨(dú)立的.

(1)若該區(qū)共2000名高中學(xué)生,估計(jì)學(xué)校參與“創(chuàng)城”活動(dòng)的人數(shù);

(2)在隨機(jī)抽查的100名高中學(xué)生中,隨機(jī)抽取1名學(xué)生,求恰好該生沒(méi)有參與“創(chuàng)城”活動(dòng)的概率;

(3)在上表中從兩校沒(méi)有參與“創(chuàng)城”活動(dòng)的同學(xué)中隨機(jī)抽取2人,求恰好兩校各有1人沒(méi)有參與“創(chuàng)城”活動(dòng)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,,點(diǎn)、分別在線段上,且,其中,連接,延長(zhǎng)的延長(zhǎng)線交于點(diǎn),連接

(Ⅰ)求證:平面

(Ⅱ)若時(shí),求二面角的正弦值;

(Ⅲ)若直線與平面所成角的正弦值為時(shí),求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)建模課上,老師給大家?guī)?lái)了一則新聞:“2019816日上午,423米的東莞第一高樓民盈國(guó)貿(mào)中心2號(hào)樓(以下簡(jiǎn)稱(chēng)國(guó)貿(mào)中心)正式封頂,隨著最后一方混凝土澆筑到位,標(biāo)志著東莞最高樓紀(jì)錄誕生,由東莞本地航母級(jí)企業(yè)民盈集團(tuán)刷新了東莞天際線,比之前的東莞第一高樓臺(tái)商大廈高出134.”在同學(xué)們的驚嘆中,老師提出了問(wèn)題:國(guó)貿(mào)中心真有這么高嗎?我們能否運(yùn)用所學(xué)知識(shí)測(cè)量驗(yàn)證一下?一周后,兩個(gè)興趣小組分享了他們各自的測(cè)量方案.

第一小組采用的是兩次測(cè)角法:他們?cè)趪?guó)貿(mào)中心隔壁的會(huì)展中心廣場(chǎng)上的點(diǎn)測(cè)得國(guó)貿(mào)中心頂部的仰角為,正對(duì)國(guó)貿(mào)中心前進(jìn)了米后,到達(dá)點(diǎn),在點(diǎn)測(cè)得國(guó)貿(mào)中心頂部的仰角為,然后計(jì)算出國(guó)貿(mào)中心的高度(如圖).

第二小組采用的是鏡面反射法:在國(guó)貿(mào)中心后面的新世紀(jì)豪園一幢11層樓(與國(guó)貿(mào)中心處于同一水平面,每層約3米)樓頂天臺(tái)上,進(jìn)行兩個(gè)操作步驟:①將平面鏡置于天臺(tái)地面上,人后退至從鏡中能看到國(guó)貿(mào)大廈的頂部位置,測(cè)量出人與鏡子的距離為米;②正對(duì)國(guó)貿(mào)中心,將鏡子前移米,重復(fù)①中的操作,測(cè)量出人與鏡子的距離為.然后計(jì)算出國(guó)貿(mào)中心的高度(如圖).

實(shí)際操作中,第一小組測(cè)得米,,最終算得國(guó)貿(mào)中心高度為;第二小組測(cè)得米,米,米,最終算得國(guó)貿(mào)中心高度為;假設(shè)他們測(cè)量者的眼高都為.

1)請(qǐng)你用所學(xué)知識(shí)幫兩個(gè)小組完成計(jì)算(參考數(shù)據(jù):,,答案保留整數(shù)結(jié)果);

2)你認(rèn)為哪個(gè)小組的方案更好,說(shuō)出你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

2)已知函數(shù),,如果函數(shù)有兩個(gè)極值點(diǎn)、,求證:.(參考數(shù)據(jù):,,為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的是(

A.是空間中的四點(diǎn),若不能構(gòu)成空間基底,則共面

B.已知為空間的一個(gè)基底,若,則也是空間的基底

C.若直線的方向向量為,平面的法向量為,則直線

D.若直線的方向向量為,平面的法向量為,則直線與平面所成角的正弦值為

查看答案和解析>>

同步練習(xí)冊(cè)答案