【題目】下列命題中正確的是(

A.是空間中的四點(diǎn),若不能構(gòu)成空間基底,則共面

B.已知為空間的一個(gè)基底,若,則也是空間的基底

C.若直線的方向向量為,平面的法向量為,則直線

D.若直線的方向向量為,平面的法向量為,則直線與平面所成角的正弦值為

【答案】ABD

【解析】

不共面的三個(gè)非零向量可以構(gòu)成空間向量的一個(gè)基底,由此可判斷AB,若直線的方向向量與平面的法向量垂直,則線面平行,可判斷C,直線的方向向量與平面的法向量夾角的余弦值的絕對(duì)值與該直線與此平面所成角的正弦值相等,由此可判斷D

對(duì)于A是空間中的四點(diǎn),若不能構(gòu)成空間基底,則共面,則共面,故A對(duì);

對(duì)于B,已知為空間的一個(gè)基底,則不共面,若,則也不共面,則也是空間的基底,故B對(duì);

對(duì)于C,因?yàn)?/span>,則,若,則,但選項(xiàng)中沒有條件,有可能會(huì)出現(xiàn),故C錯(cuò);

對(duì)于D,∵,則則直線與平面所成角的正弦值為,故D對(duì);

故選:ABD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求的單調(diào)區(qū)間;

(2)若上成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)到直線的距離為為等腰直角三角形.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線與橢圓交于,兩點(diǎn),若直線與直線的斜率之和為,證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】世界衛(wèi)生組織的最新研究報(bào)告顯示,目前中國(guó)近視患者人數(shù)多達(dá)6億,高中生和大學(xué)生的近視率均已超過七成,為了研究每周累計(jì)戶外暴露時(shí)間(單位:小時(shí))與近視發(fā)病率的關(guān)系,對(duì)某中學(xué)一年級(jí)200名學(xué)生進(jìn)行不記名問卷調(diào)查,得到如下數(shù)據(jù):

每周累積戶外暴露時(shí)間(單位:小時(shí))

不少于28小時(shí)

近視人數(shù)

21

39

37

2

1

不近視人數(shù)

3

37

52

5

3

(1)在每周累計(jì)戶外暴露時(shí)間不少于28小時(shí)的4名學(xué)生中,隨機(jī)抽取2名,求其中恰有一名學(xué)生不近視的概率;

(2)若每周累計(jì)戶外暴露時(shí)間少于14個(gè)小時(shí)被認(rèn)證為“不足夠的戶外暴露時(shí)間”,根據(jù)以上數(shù)據(jù)完成如下列聯(lián)表,并根據(jù)(2)中的列聯(lián)表判斷能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為不足夠的戶外暴露時(shí)間與近視有關(guān)系?

近視

不近視

足夠的戶外暴露時(shí)間

不足夠的戶外暴露時(shí)間

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線恒過定點(diǎn),過點(diǎn)引圓的兩條切線,設(shè)切點(diǎn)分別為,.

1)求直線的一般式方程;

2)求四邊形的外接圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離比它到軸的距離大.

1)求動(dòng)點(diǎn)的軌跡的方程;

2)設(shè)點(diǎn)(為常數(shù)),過點(diǎn)作斜率分別為的兩條直線,交曲線兩點(diǎn),交曲線兩點(diǎn),點(diǎn)分別是線段的中點(diǎn),若,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓兩焦點(diǎn)坐標(biāo)為,橢圓上的點(diǎn)到右焦點(diǎn)距離最小值為.

1)求橢圓的方程;

2)設(shè)斜率為-2的直線交曲線、兩點(diǎn),求線段的中點(diǎn)的軌跡方程;

3)設(shè)經(jīng)過點(diǎn)的直線與曲線相交所得的弦為線段,求的面積的最大值(是坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對(duì)其身高和臂展進(jìn)行測(cè)量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對(duì)應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:①任意兩條直線都可以確定一個(gè)平面;②若兩個(gè)平面有3個(gè)不同的公共點(diǎn),則這兩個(gè)平面重合;③直線a,bc,若ab共面,bc共面,則ac共面;④若直線l上有一點(diǎn)在平面α外,則l在平面α.其中錯(cuò)誤命題的個(gè)數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案