已知,橢圓C以過(guò)點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。

(1)
(2)

解析試題分析:解:(1)由題意,c=1,可設(shè)橢圓方程為。
因?yàn)锳在橢圓上,所以,解得=3,(舍去)。
所以橢圓方程為 .                 6分
(2)設(shè)直線AE方程:得,代入

設(shè)E(,),F(,).因?yàn)辄c(diǎn)A(1,)在橢圓上,所以

!                      9分
又直線AF的斜率與AE的斜率互為相反數(shù),在上式中以,可得
,
。
所以直線EF的斜率。
即直線EF的斜率為定值,其值為。      
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評(píng):主要是考查了直線與橢圓的位置關(guān)系的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)點(diǎn)作直線與雙曲線相交于兩點(diǎn)、,且為線段的中點(diǎn),求這條直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過(guò)點(diǎn).

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.

(1)求橢圓C的方程;
(2)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)到直線(是正常數(shù))的距離為,到點(diǎn)的距離為,且1.
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線過(guò)點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B,分別過(guò)A、B點(diǎn)作直線的垂線,對(duì)應(yīng)的垂足分別為,求證=
(3)記,
(A、B、是(2)中的點(diǎn)),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線:上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)直線與拋物線交于不同兩點(diǎn),若滿足,證明直線恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).
(Ⅲ)試把問(wèn)題(Ⅱ)的結(jié)論推廣到任意拋物線:中,請(qǐng)寫出結(jié)論,不用證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓E:的離心率為,右焦點(diǎn)為F,且橢圓E上的點(diǎn)到點(diǎn)F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點(diǎn)分別為A,B,過(guò)點(diǎn)A的直線l與橢圓E及直線x=8分別相交于點(diǎn)M,N.
(。┊(dāng)過(guò)A,F(xiàn),N三點(diǎn)的圓半徑最小時(shí),求這個(gè)圓的方程;
(ⅱ)若,求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,一水渠的橫斷面是拋物線形,O是拋物線的頂點(diǎn),口寬EF=4米,高3米建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線方程.現(xiàn)將水渠橫斷面改造成等腰梯形ABCD,要求高度不變,只挖土,不填土,求梯形ABCD的下底AB多大時(shí),所挖的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N  (點(diǎn)M在點(diǎn)N的右側(cè)),且。橢圓D:的焦距等于,且過(guò)點(diǎn)

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過(guò)點(diǎn)M的動(dòng)直線與橢圓D交于A、B兩點(diǎn),若點(diǎn)N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案