2.如圖陰影部分是由曲線y=2x2和x2+y2=3及x軸圍成的部分封閉圖形,則陰影部分的面積為( 。
A.$\frac{π}{2}-\frac{{\sqrt{3}}}{8}$B.$\frac{π}{2}-\frac{{3\sqrt{3}}}{8}$C.$\frac{3π}{2}-\frac{{\sqrt{3}}}{8}$D.$\frac{3π}{2}-\frac{{3\sqrt{3}}}{8}$

分析 首先求出曲線的交點(diǎn),然后求直線y=$\sqrt{3}$x與y=2x2圍成的面積S1,利用扇形的面積公式,求得扇形AOB的面積S2,陰影部分的面積S=S2-S1=$\frac{π}{2}$-$\frac{\sqrt{3}}{8}$.

解答 解:曲線y=2x2和圓x2+y2=3的在第一象限的交點(diǎn)為A($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),
則直線OA的方程方程為:y=$\sqrt{3}$x,
∴直線OA與拋物線y=2x2所圍成的面積S1=${∫}_{0}^{\frac{\sqrt{3}}{2}}$($\sqrt{3}$x-2x2)dx=($\frac{\sqrt{3}}{2}$x2-$\frac{2}{3}$x3)${丨}_{0}^{\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{2}$×$\frac{3}{4}$-$\frac{2}{3}$×$\frac{3\sqrt{3}}{8}$=$\frac{\sqrt{3}}{8}$,
則扇形AOB圓心角為α=$\frac{π}{3}$,則扇形AOB的面積S2=$\frac{1}{2}$αr2=$\frac{1}{2}$×$\frac{π}{3}$×3=$\frac{π}{2}$,
∴陰影部分的面積S=S2-S1=$\frac{π}{2}$-$\frac{\sqrt{3}}{8}$,
故選A.

點(diǎn)評(píng) 本題考查了利用定積分求陰影部分的面積,關(guān)鍵是利用定積分表示面積,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i;當(dāng)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z是:
(1)實(shí)數(shù)
(2)虛數(shù)
(3)純虛數(shù)
(4)零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在正方體ABCD-A1B1C1D1中,B1D與C1D1所成角的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\underset{lim}{△x→0}$$\frac{f{(x}_{0}+△x)-f{(x}_{0}-△x)}{△x}$=(  )
A.$\frac{1}{2}$f′(x0B.f′(x0C.2f′(x0D.-f′(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下5個(gè)不等關(guān)系式子
 ①$\sqrt{3}$-1>$2-\sqrt{2}$
②$2-\sqrt{2}$>$\sqrt{5}-\sqrt{3}$
③$\sqrt{5}-\sqrt{3}$>$\sqrt{6}-2$
④$\sqrt{6}-2$>$\sqrt{7}-\sqrt{5}$
⑤$\sqrt{7}-\sqrt{5}$>$2\sqrt{2}-\sqrt{6}$
(1)上述五個(gè)式子有相同的不等關(guān)系,分析其結(jié)構(gòu)特點(diǎn),請(qǐng)你再寫出一個(gè)類似的不等式
(2)請(qǐng)寫出一個(gè)更一般的不等式,使以上不等式為它的特殊情況,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=2x3+3ax2+3bx+8c在x=1及x=2時(shí)取得極值.
(1)求a、b的值;
(2)若對(duì)于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)曲線y=ax-ln(2x+1)在點(diǎn)(0,0)處的切線方程為y=2x,則a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等比數(shù)列{an}的公比q>1,a2,a3是方程x2-6x+8=0的兩根.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{2n•an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.定義運(yùn)算a⊕b=a2+2ab-b2,則cos$\frac{π}{6}$⊕sin$\frac{π}{6}$=$\frac{1+\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案