橢圓E:
,對(duì)于任意實(shí)數(shù)
下列直線被橢圓E截得的弦長與直線
被橢圓E截得的弦長不可能相等的是( )
本題考查直線和橢圓的位置關(guān)系,通過給變量取特殊值,舉反例來說明某個(gè)命題不正確,是一種簡單有效的方法.
由數(shù)形結(jié)合可知,當(dāng)l過點(diǎn)(-1,0)時(shí),直線l和選項(xiàng)A中的直線重合,故不能選 A.
當(dāng)l過點(diǎn)(1,0)時(shí),直線l和選項(xiàng)D中的直線關(guān)于y軸對(duì)稱,被橢圓E所截得的弦長相同,故不能選D.
當(dāng)k=0時(shí),直線l和選項(xiàng)B中的直線關(guān)于x軸對(duì)稱,被橢圓E所截得的弦長相同,故不能選B.
直線l斜率為k,在y軸上的截距為1;選項(xiàng)C中的直線kx+y-2="0" 斜率為-k,在y軸上的截距為2,這兩直線不關(guān)于x軸、
y軸、原點(diǎn)對(duì)稱,故被橢圓E所截得的弦長不可能相等,故選D
解決該試題的關(guān)鍵是對(duì)l過點(diǎn)(-1,0)時(shí), 或者過點(diǎn)(1,0)時(shí), 當(dāng)k=0時(shí),直線l和選項(xiàng)B中的直線關(guān)于x軸對(duì)稱,被橢圓E所截得的弦長相同.討論得到。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,長軸長是短軸長的2倍,且經(jīng)過點(diǎn)
(2,1),平行于
直線
在
軸上的截距為
,設(shè)直線
交橢圓于兩個(gè)不同點(diǎn)
、
,
(1)求橢圓方程;
(2)求證:對(duì)任意的
的允許值,
的內(nèi)心在定直線
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
上一點(diǎn)
到焦點(diǎn)
的距離為2,
是
的中點(diǎn),則
等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(12分) 如圖,設(shè)P是圓x
2+y
2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且MD=
PD.
(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為
的直線被C所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分) 已知橢圓E:
=1(a>b>o)的離心率e=
,且經(jīng)過點(diǎn)(
,1),O為坐標(biāo)原點(diǎn)。
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
。á颍﹫AO是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,切點(diǎn)分別為P、Q,當(dāng)∠PMQ=60°時(shí),求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
以橢圓上一點(diǎn)和兩個(gè)焦點(diǎn)為頂點(diǎn)的三角形的最大面積為1,則長軸長的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓
的長軸長是短軸長的兩倍,且過點(diǎn)
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若直線
與橢圓
交于不同的兩點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)離心率為
的橢圓
:
的左、右焦點(diǎn)分別為
、
,
是坐標(biāo)原點(diǎn).
(1)求橢圓
的方程;
(2)若直線
與
交于相異兩點(diǎn)
、
,且
,求
.(其中
是坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓
的兩個(gè)焦點(diǎn)F
1、F
2,點(diǎn)P在橢圓C上,且P F
1⊥F
1F
2,| P F
1|=
,| P F
2|=
。
(I)求橢圓C的方程;
(II)若直線L過圓x
2+y
2+4x-2y=0的圓心M交橢圓于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對(duì)稱,求直線L的方程。
查看答案和解析>>