橢圓E:,對(duì)于任意實(shí)數(shù)下列直線被橢圓E截得的弦長與直線
被橢圓E截得的弦長不可能相等的是( )
A.B.C.D.
D
本題考查直線和橢圓的位置關(guān)系,通過給變量取特殊值,舉反例來說明某個(gè)命題不正確,是一種簡單有效的方法.
由數(shù)形結(jié)合可知,當(dāng)l過點(diǎn)(-1,0)時(shí),直線l和選項(xiàng)A中的直線重合,故不能選 A.
當(dāng)l過點(diǎn)(1,0)時(shí),直線l和選項(xiàng)D中的直線關(guān)于y軸對(duì)稱,被橢圓E所截得的弦長相同,故不能選D.
當(dāng)k=0時(shí),直線l和選項(xiàng)B中的直線關(guān)于x軸對(duì)稱,被橢圓E所截得的弦長相同,故不能選B.
直線l斜率為k,在y軸上的截距為1;選項(xiàng)C中的直線kx+y-2="0" 斜率為-k,在y軸上的截距為2,這兩直線不關(guān)于x軸、
y軸、原點(diǎn)對(duì)稱,故被橢圓E所截得的弦長不可能相等,故選D
解決該試題的關(guān)鍵是對(duì)l過點(diǎn)(-1,0)時(shí), 或者過點(diǎn)(1,0)時(shí), 當(dāng)k=0時(shí),直線l和選項(xiàng)B中的直線關(guān)于x軸對(duì)稱,被橢圓E所截得的弦長相同.討論得到。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍,且經(jīng)過點(diǎn)(2,1),平行于直線軸上的截距為,設(shè)直線交橢圓于兩個(gè)不同點(diǎn)、,

(1)求橢圓方程;
(2)求證:對(duì)任意的的允許值,的內(nèi)心在定直線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點(diǎn)到焦點(diǎn)的距離為2,的中點(diǎn),則等于(  )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分) 如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且MD=PD.

(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn)。

(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
。á颍﹫AO是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點(diǎn),過M作圓O的兩條切線,切點(diǎn)分別為P、Q,當(dāng)∠PMQ=60°時(shí),求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以橢圓上一點(diǎn)和兩個(gè)焦點(diǎn)為頂點(diǎn)的三角形的最大面積為1,則長軸長的最小值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的長軸長是短軸長的兩倍,且過點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于不同的兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)離心率為的橢圓的左、右焦點(diǎn)分別為、是坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)若直線交于相異兩點(diǎn)、,且,求.(其中是坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的兩個(gè)焦點(diǎn)F1、F2,點(diǎn)P在橢圓C上,且P F1⊥F1F2,| P F1|=,| P F2|=。
(I)求橢圓C的方程;
(II)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點(diǎn),且A、B關(guān)于點(diǎn)M對(duì)稱,求直線L的方程。

查看答案和解析>>

同步練習(xí)冊答案