【題目】如圖,質(zhì)點從正方體的頂點出發(fā),沿正方體的棱運動,每經(jīng)過一條棱稱之為一次運動,第一次運動經(jīng)過,第二次運動經(jīng)過,第三次運動經(jīng)過,且對于任意的正整數(shù),第次運動所經(jīng)過的棱與第次運動所經(jīng)過的棱所在的直線是異面直線,則經(jīng)過2019次運動后,點到達的頂點為________

【答案】

【解析】

由題意設(shè)第次運動前起始點為,分析第次運動后所在的位置與的位置關(guān)系即可.

由題,不妨設(shè)第次運動前質(zhì)點在點.則第次運動經(jīng)過的,當?shù)?/span>次運動經(jīng)過,次運動經(jīng)過.又第次運動所經(jīng)過的棱與第次運動所經(jīng)過的棱所在的直線是異面直線,故第次運動只能經(jīng)過.即第次運動后只可能在處.同理當?shù)?/span>次運動經(jīng)過時也有第次運動后只可能在處.

故從開始第3次運動后必定在.第6次運動后必定回到,即6次運動為一個周期.

,故經(jīng)過2019次運動后與經(jīng)過3次后的位置相同,即.

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某校學生社團組織活動豐富,學生會為了解同學對社團活動的滿意程度,隨機選取了100位同學進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[50,60),[6070),[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學生中按分層抽樣的方法抽取5人進行座談了解,再從這5人中隨機抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在空間四邊形ABCD中,H,G分別是AD,CD的中點,E,F分別邊AB,BC上的點,且;

求證:(1)點E,F,GH四點共面;

2)直線EH,BD,FG相交于同一點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《九章算術(shù)》中記載的芻甍chu meng)是指底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個芻甍,其中是正三角形,,則以下兩個結(jié)論:①;②,(

A.①和②都不成立B.①成立,但②不成立

C.①不成立,但②成立D.①和②都成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓,是長軸的一個端點,弦過橢圓的中心,且

1)求橢圓的方程.

2)過橢圓右焦點的直線,交橢圓兩點,交直線于點,判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),)為奇函數(shù),且相鄰兩對稱軸間的距離為

1)當時,求的單調(diào)遞減區(qū)間;

2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)的圖象.當時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)的某種產(chǎn)品,如果年返修率不超過千分之一,則其生產(chǎn)部門當年考核優(yōu)秀,現(xiàn)獲得該公司2014-2018年的相關(guān)數(shù)據(jù)如下表所示:

年份

2014

2015

2016

2017

2018

年生產(chǎn)臺數(shù)(萬臺)

2

4

5

6

8

該產(chǎn)品的年利潤(百萬元)

30

40

60

50

70

年返修臺數(shù)(臺)

19

58

45

71

70

注:

(1)從該公司2014-2018年的相關(guān)數(shù)據(jù)中任意選取3年的數(shù)據(jù),求這3年中至少有2年生產(chǎn)部門考核優(yōu)秀的概率.

(2)利用上表中五年的數(shù)據(jù)求出年利潤(百萬元)關(guān)于年生產(chǎn)臺數(shù)(萬臺)的回歸直線方程是 ①.現(xiàn)該公司計劃從2019年開始轉(zhuǎn)型,并決定2019年只生產(chǎn)該產(chǎn)品1萬臺,且預計2019年可獲利32(百萬元);但生產(chǎn)部門發(fā)現(xiàn),若用預計的2019年的數(shù)據(jù)與2014-2018年中考核優(yōu)秀年份的數(shù)據(jù)重新建立回歸方程,只有當重新估算的,的值(精確到0.01),相對于①中,的值的誤差的絕對值都不超過時,2019年該產(chǎn)品返修率才可低于千分之一.若生產(chǎn)部門希望2019年考核優(yōu)秀,能否同意2019年只生產(chǎn)該產(chǎn)品1萬臺?請說明理由.

(參考公式: ,,相對的誤差為.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點,若點在橢圓C上,則點稱為點M的一個橢點”.

1)求橢圓C的標準方程;

2)若直線與橢圓C相交于A,B兩點,且A,B兩點的橢點分別為PQ,以PQ為直徑的圓經(jīng)過坐標原點,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

同步練習冊答案