【題目】如圖,已知橢圓,是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心,且

1)求橢圓的方程.

2)過(guò)橢圓右焦點(diǎn)的直線,交橢圓兩點(diǎn),交直線于點(diǎn),判定直線的斜率是否依次構(gòu)成等差數(shù)列?請(qǐng)說(shuō)明理由.

【答案】1;(2)是,理由見(jiàn)詳解.

【解析】

1)由題意可得,求出點(diǎn)的坐標(biāo),代入橢圓方程得到,從而求得橢圓的方程;

2)設(shè)出直線的方程,和橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系得到,并求得的值, 說(shuō)明直線的斜率成等差數(shù)列.

1)由,得,即,

所以是等腰三角形,

,∴點(diǎn)的橫坐標(biāo)為2;

,

設(shè)點(diǎn)的縱坐標(biāo)為,∴,解得

應(yīng)取,

又點(diǎn)在橢圓上,∴,解得

∴所求橢圓的方程為;

2)由題意知橢圓的右焦點(diǎn)為

由題意可知直線的斜率存在,

設(shè)直線的方程為,

代入橢圓并整理,得;

設(shè),直線的斜率分別為,

則有,

可知的坐標(biāo)為;

;

所以

即直線的斜率成等差數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某手機(jī)廠商在銷售200萬(wàn)臺(tái)某型號(hào)手機(jī)時(shí)開展“手機(jī)碎屏險(xiǎn)”活動(dòng).活動(dòng)規(guī)則如下:用戶購(gòu)買該型號(hào)手機(jī)時(shí)可選購(gòu)“手機(jī)碎屏險(xiǎn)”,保費(fèi)為元.若在購(gòu)機(jī)后一年內(nèi)發(fā)生碎屏可免費(fèi)更換一次屏幕.該手機(jī)廠商將在這200萬(wàn)臺(tái)該型號(hào)手機(jī)全部銷售完畢一年后,在購(gòu)買碎屏險(xiǎn)且購(gòu)機(jī)后一年內(nèi)未發(fā)生碎屏的用戶中隨機(jī)抽取1000名,每名用戶贈(zèng)送1000元的紅包.為了合理確定保費(fèi)的值,該手機(jī)廠商進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)后得到下表(其中表示保費(fèi)為元時(shí)愿意購(gòu)買該“手機(jī)碎屏險(xiǎn)”的用戶比例):

10

20

30

40

50

0.79

0.59

0.38

0.23

0.01

(1)根據(jù)上面的數(shù)據(jù)求出關(guān)于的回歸直線方程;

(2)通過(guò)大數(shù)據(jù)分析,在使用該型號(hào)手機(jī)的用戶中,購(gòu)機(jī)后一年內(nèi)發(fā)生碎屏的比例為.已知更換一次該型號(hào)手機(jī)屏幕的費(fèi)用為2000元,若該手機(jī)廠商要求在這次活動(dòng)中因銷售該“手機(jī)碎屏險(xiǎn)”產(chǎn)生的利潤(rùn)不少于70萬(wàn)元,能否把保費(fèi)定為5元?

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)分別為,.

參考數(shù)據(jù):表中的5個(gè)值從左到右分別記為,,,,相應(yīng)的值分別記為,,,,,經(jīng)計(jì)算有,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知焦點(diǎn)在y軸上的橢圓E的中心是原點(diǎn)O,離心率等于,以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的周長(zhǎng)為.直線軸交于點(diǎn)P,與橢圓E相交于A,B兩個(gè)點(diǎn).

(I)求橢圓E的方程;

(II)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時(shí),周日測(cè)試

方式二:周六一天培訓(xùn)4小時(shí),周日測(cè)試

公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測(cè)試達(dá)標(biāo)的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人中至少有1人來(lái)自甲組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,底面是邊長(zhǎng)為的正三角形,,且,分別是中點(diǎn),則異面直線所成角的余弦值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,質(zhì)點(diǎn)從正方體的頂點(diǎn)出發(fā),沿正方體的棱運(yùn)動(dòng),每經(jīng)過(guò)一條棱稱之為一次運(yùn)動(dòng),第一次運(yùn)動(dòng)經(jīng)過(guò),第二次運(yùn)動(dòng)經(jīng)過(guò),第三次運(yùn)動(dòng)經(jīng)過(guò),且對(duì)于任意的正整數(shù),第次運(yùn)動(dòng)所經(jīng)過(guò)的棱與第次運(yùn)動(dòng)所經(jīng)過(guò)的棱所在的直線是異面直線,則經(jīng)過(guò)2019次運(yùn)動(dòng)后,點(diǎn)到達(dá)的頂點(diǎn)為________點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,幾何體,為邊長(zhǎng)為2的正方形,為直角梯形,,,

(1)求證:

(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)F與橢圓的右焦點(diǎn)重合,過(guò)焦點(diǎn)F的直線l交拋物線于AB兩點(diǎn).

1)求拋物線C的方程;

2)記拋物線C的準(zhǔn)線與x軸的交點(diǎn)為H,試問(wèn):是否存在,使得,且成立?若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)個(gè)零點(diǎn),求的取值范圍;

(2)若有兩個(gè)極值點(diǎn),且,求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案