如圖,在四棱錐中,⊥平面,底面為梯形,∥,⊥,,點在棱上,且.
(1)當時,求證:∥面;
(2)若直線與平面所成角為,求實數(shù)的值.
(1)證明過程見試題解析;(2)實數(shù)的值為.
解析試題分析:(Ⅰ)連接BD交AC于點M,連結(jié)ME, 先證明,再證明∥面;
先以A為坐標原點,分別以AB,AP為y軸,Z軸建立空間直角坐標系, 求出各點的坐標,再求出平面的一個法向量為, 而已知直線與平面所成角為,進而可求實數(shù)的值.
試題解析:(Ⅰ)證明:連接BD交AC于點M,連結(jié)ME,
因∥
,當時,
.
則∥面. 4分
(Ⅱ)由已知可以A為坐標原點,分別以AB,AP為y軸,Z軸建立空間直角坐標系,設(shè)DC=2,則,
由,可得E點的坐標為 6分
所以.
設(shè)平面的一個法向量為,則,設(shè),則,,所以 8分
若直線與平面所成角為,
則, 9分
解得 10分
考點:空間向量、直線與平面的位置關(guān)系.
科目:高中數(shù)學 來源: 題型:解答題
已知四邊形ABCD是菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,G,H分別是CE,CF的中點.
(1)求證:平面AEF∥平面BDGH
(2)若平面BDGH與平面ABCD所成的角為60°,求直線CF與平面BDGH所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,△ABC是等邊三角形,D是BC的中點.
(1)求證:A1B∥平面ADC1;
(2)若AB=BB1=2,求A1D與平面AC1D所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,是邊長為3的正方形,,,與平面所成的角為.
(1)求二面角的的余弦值;
(2)設(shè)點是線段上一動點,試確定的位置,使得,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,底面△ABC為等腰直角三角形,∠B = 900,D為棱BB1上一點,且面DA1 C⊥面AA1C1C.求證:D為棱BB1中點;(2)為何值時,二面角A -A1D - C的平面角為600.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.
(1)求證AC⊥平面DEF;
(2)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.
(3)求平面ABD與平面DEF所成銳二面角的余弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com