【題目】我們?yōu)榱颂骄亢瘮?shù)的部分性質(zhì),先列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.004 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
觀察表中值隨值變化的特點,完成以下的問題.
首先比較容易看得出來:此函數(shù)在區(qū)間上是遞減的;
(1)函數(shù)在區(qū)間 上遞增
當 時,= .
(2)請你根據(jù)上面性質(zhì)作出此函數(shù)的大概圖像;
(3)試用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上為減函數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,已知橢圓的離心率為,左右焦點分別為和,以點為圓心,以為半徑的圓與以點為圓心,以為半徑的圓相交,且交點在橢圓上.
()求橢圓的方程.
()設橢圓, 為橢圓上任意一點,過點的直線交橢圓于、兩點,射線交橢圓于點.
①求的值.
②(理科生做)求面積的最大值.
③(文科生做)當時, 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]時恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點E、F分別在棱BB1、CC1上,且BE= BB1 , C1F= CC1 .
(1)求平面AEF與平面ABC所成角α的余弦值;
(2)若G為BC的中點,A1G與平面AEF交于H,且設 = ,求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機抽取50個作為樣本,稱出它們的重量單位:克,重量分組區(qū)間為,,,,由此得到樣本的重量頻率分布直方圖如圖.
(1)求的值,并根據(jù)樣本數(shù)據(jù),試估計盒子中小球重量的眾數(shù)與平均值;
(2)從盒子中隨機抽取3個小球,其中重量內(nèi)的小球個數(shù)為,求的分布列和數(shù)學期望.(以直方圖中的頻率作為概率)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是( )
A. B. C. D.
【答案】C
【解析】∵,
∴,
由得,
∴函數(shù)的單調(diào)減區(qū)間為,
又函數(shù)在區(qū)間上單調(diào)遞減,
∴ ,
∴,解得,
∴實數(shù)的取值范圍是.選C.
點睛:已知函數(shù)在區(qū)間上的單調(diào)性求參數(shù)的方法
(1)利用導數(shù)求解,轉化為導函數(shù)在該區(qū)間上大于等于零(或小于等于零)恒成立的問題求解,一般通過分離參數(shù)化為求函數(shù)的最值的問題.
(2)先求出已知函數(shù)的單調(diào)區(qū)間,然后將問題轉化為所給的區(qū)間是函數(shù)相應的單調(diào)區(qū)間的子集的問題處理.
【題型】單選題
【結束】
7
【題目】設,函數(shù)的圖象向右平移個單位長度后與原圖象重合,則的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中不正確的序號為_______.
①若函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③已知函數(shù)的定義域為,則函數(shù)的定義域是;
④若函數(shù)在上有最小值-4,(,為非零常數(shù)),則函數(shù)在上有最大值6.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com