【題目】已知定義在上的奇函數(shù)在區(qū)間上是減函數(shù),且滿足.令,則的大小關系為( )
A. B.
C. D.
【答案】A
【解析】分析:分析函數(shù)可知函數(shù)是周期為4的函數(shù),且關于x =﹣1對稱,所以可得f(x)在[﹣1,1]上是增函數(shù),比較,的大小即可得解.
詳解:∵奇函數(shù)f(x)在區(qū)間[﹣2,﹣1]上是減函數(shù),且滿足f(x﹣2)=﹣f(x).
∴f(x﹣4)=﹣f(x﹣2)=f(x),即函數(shù)的周期是4,
又f(x﹣2)=﹣f(x)=f(﹣x),
則函數(shù)關于x =﹣1對稱,
則函數(shù)在[﹣1,0]上是增函數(shù),且f(x)在[﹣1,1]上是增函數(shù),
,
,
.
又,所以.
又,所以.
綜上.即0<c<a<b<1,
又f(x)在[﹣1,1]上是增函數(shù),
∴f(b)>f(a)>f(c),
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】已知小李每次打靶命中靶心的概率都為40%,現(xiàn)采用隨機模擬的方法估計小李三次打靶恰有兩次命中靶心的概率.先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定0,1,2,3表示命中靶心,4,5,6,7,8,9表示未命中靶心,再以每三個隨機數(shù)為一組,代表三次打靶的結果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
321 421 191 925 271 932 800 478
589 663 531 297 396 021 546 388
230 113 507 965
據(jù)此估計,小李三次打靶恰有兩次命中的概率為( )
A. 0.25 B. 0.30
C. 0.35 D. 0.40
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商品近一個月內(nèi)(30天)預計日銷量(件)與時間t(天)的關系如圖1所示,單價(萬元/件)與時間t(天)的函數(shù)關系如圖2所示,(t為整數(shù))
(1)試寫出與的解析式;
(2)求此商品日銷售額的最大值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設g(x)=log4,若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為邊長為2的菱形,,,面面,點為棱的中點.
(1)在棱上是否存在一點,使得面,并說明理由;
(2)當二面角的余弦值為時,求直線與平面所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】容器中有種粒子,若相同種類的兩顆粒子發(fā)生碰撞,則變成一顆粒子;不同種類的兩顆粒子發(fā)生碰撞,會變成另外一種粒子. 例如,一顆粒子和一顆粒子發(fā)生碰撞則變成一顆粒子.現(xiàn)有粒子顆,粒子顆,粒子顆,如果經(jīng)過各種兩兩碰撞后,只剩顆粒子. 給出下列結論:
① 最后一顆粒子可能是粒子
② 最后一顆粒子一定是粒子
③ 最后一顆粒子一定不是粒子
④ 以上都不正確
其中正確結論的序號是________.(寫出所有正確結論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2x-.
(1)若f(x)=,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二次函數(shù)的圖象頂點為,且圖象在軸上截得的線段長為8.
(1)求函數(shù)的解析式;
(2)令.
(。┣蠛瘮(shù)在上的最小值;
(ⅱ)若時,不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com