(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程  
已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ。
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)

(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c7/9/1uv5d3.png" style="vertical-align:middle;" />,消去參數(shù),得,即,
極坐標(biāo)方程為;
(2)的普通方程為,聯(lián)立、的方程,解得,所以交點(diǎn)的極坐標(biāo)為.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為,(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1) 求曲線的普通方程與曲線的直角坐標(biāo)方程;
(2) 設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

極坐標(biāo)系中,已知圓心C,半徑r=1.
(1)求圓的直角坐標(biāo)方程;
(2)若直線與圓交于兩點(diǎn),求弦的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為:,曲線C2的參數(shù)方程為:,點(diǎn)N的極坐標(biāo)為
(Ⅰ)若M是曲線C1上的動(dòng)點(diǎn),求M到定點(diǎn)N的距離的最小值;
(Ⅱ)若曲線C1與曲線C2有有兩個(gè)不同交點(diǎn),求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線 (t為參數(shù)), 
(1)化C,C的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)若C上的點(diǎn)P對(duì)應(yīng)的參數(shù)為,Q為C上的動(dòng)點(diǎn),求中點(diǎn)到直線
 (t為參數(shù))距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

某小賣部銷售一品牌飲料的零售價(jià)x(元/評(píng))與銷售量y(瓶)的關(guān)系統(tǒng)計(jì)如下:

零售價(jià)x(元/瓶)
3.0
3.2
3.4
3.6
3.8
4.0
銷量y(瓶)
50
44
43
40
35
28
 
已知的關(guān)系符合線性回歸方程,其中.當(dāng)單價(jià)為4.2元時(shí),估計(jì)該小賣部銷售這種品牌飲料的銷量為(    )
A.20    B.22     C.24      D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求直線(t為參數(shù))被圓(α為參數(shù))截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為,
以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
⑴ 求曲線的普通方程和曲線的直角坐標(biāo)方程;
⑵ 當(dāng)時(shí),曲線相交于、兩點(diǎn),求以線段為直徑的圓的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),曲線的參數(shù)方程為,(為參數(shù)),試求直線和曲線的普通方程,并求它們的公共點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案