【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標(biāo)原點為極點,以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+ )=2 .
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標(biāo).
【答案】
(1)
解:曲線C1的參數(shù)方程為 (α為參數(shù)),
移項后兩邊平方可得 +y2=cos2α+sin2α=1,
即有橢圓C1: +y2=1;
曲線C2的極坐標(biāo)方程為ρsin(θ+ )=2 ,
即有ρ( sinθ+ cosθ)=2 ,
由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,
即有C2的直角坐標(biāo)方程為直線x+y﹣4=0
(2)
解:由題意可得當(dāng)直線x+y﹣4=0的平行線與橢圓相切時,
|PQ|取得最值.
設(shè)與直線x+y﹣4=0平行的直線方程為x+y+t=0,
聯(lián)立 可得4x2+6tx+3t2﹣3=0,
由直線與橢圓相切,可得△=36t2﹣16(3t2﹣3)=0,
解得t=±2,
顯然t=﹣2時,|PQ|取得最小值,
即有|PQ|= = ,
此時4x2﹣12x+9=0,解得x= ,
即為P( , )
【解析】(1)運用兩邊平方和同角的平方關(guān)系,即可得到C1的普通方程,運用x=ρcosθ,y=ρsinθ,以及兩角和的正弦公式,化簡可得C2的直角坐標(biāo)方程;(2)由題意可得當(dāng)直線x+y﹣4=0的平行線與橢圓相切時,|PQ|取得最值.設(shè)與直線x+y﹣4=0平行的直線方程為x+y+t=0,代入橢圓方程,運用判別式為0,求得t,再由平行線的距離公式,可得|PQ|的最小值,解方程可得P的直角坐標(biāo).;本題考查參數(shù)方程和普通方程的互化、極坐標(biāo)和直角坐標(biāo)的互化,同時考查直線與橢圓的位置關(guān)系,主要是相切,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 (a>b>0)如圖,已知橢圓C:的左、右焦點分別為F1、F2 , 離心率為 ,點A是橢圓上任一點,△AF1F2的周長為 . (Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(﹣4,0)任作一動直線l交橢圓C于M,N兩點,記 ,若在線段MN上取一點R,使得 ,則當(dāng)直線l轉(zhuǎn)動時,點R在某一定直線上運動,求該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,若存在,滿足,則稱是的一個“友好”三角形.
(ⅰ)在滿足下述條件的三角形中,存在“友好”三角形的是__________;(請寫出符合要求的條件的序號).
①,,; ②,,;
③,,.
(ⅱ)若存在“友好”三角形,且,在另外兩個角的度數(shù)分別為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求常數(shù)k的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值;
(3)設(shè),且, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,=(6,1),=(x,y),=(-2,-3),且∥.
(1)求x與y的關(guān)系式;
(2)若⊥,求x、y的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙二人用4張撲克牌(分別是紅桃2,紅桃3,紅桃4,方片4)完游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
(1)設(shè)分別表示甲、乙抽到的牌的數(shù)字,寫出甲乙二人抽到的牌的所有情況;
(2)若甲抽到紅桃3,則乙抽出的牌的牌面數(shù)字比3大的概率是多少?
(3)甲乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝,反之,則乙勝,你認(rèn)為此游戲是否公平,說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校乒乓球隊有3名男同學(xué)A,B,C和3名女同學(xué)X,Y,Z,其年級情況如下表:
一年級 | 二年級 | 三年級 | |
男同學(xué) | A | B | C |
女同學(xué) | X | Y | Z |
現(xiàn)從這6名同學(xué)中隨機選出2人參加乒乓球比賽(每人被選到的可能性相同).
(1)用表中字母列舉出所有可能的結(jié)果;
(2)設(shè)M為事件“選出的2人來自不同年級且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某小學(xué)體育素質(zhì)達(dá)標(biāo)運動會上,對10名男生和10名女生在一分鐘跳繩的次數(shù)進(jìn)行統(tǒng)計,得到如下所示莖葉圖:
(1)已知男生組中數(shù)據(jù)的中位數(shù)為125,女生組數(shù)據(jù)的平均數(shù)為124,求x,y的值;
(2)現(xiàn)從這20名學(xué)生中任意抽取一名男生和一名女生對他們進(jìn)行訓(xùn)練,記一分鐘內(nèi)跳繩次數(shù)不低于115且不超過125的學(xué)生被選上的人數(shù)為X,求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com