【題目】設(shè)函數(shù),其中.
(1)若,求函數(shù)在區(qū)間上的取值范圍;
(2)若,且對任意的,都有,求實數(shù)的取值范圍;
(3)若對任意的,都有,求實數(shù)的取值范圍.
【答案】(1);(2);(3).
【解析】試題分析:(1)當時,利用配方法可知當時有最小值,當時有最大值.(2)由(1)知函數(shù)對稱軸為,由此將分成兩類,討論函數(shù)的最大值,并使最大值小于或等于,由此求得實數(shù)的取值范圍.(3)將問題轉(zhuǎn)化為函數(shù)在區(qū)間上的最小值和最大值之差的絕對值小于等于來解決.對分成四類,討論函數(shù)的最值,并求得的取值范圍.
試題解析: ,所以在區(qū)間上單調(diào)減,在區(qū)間上單調(diào)增,且對任意的,都有,
(1)若,則.
在區(qū)間上的取值范圍為.
(2)“對任意的,都有”等價于“在區(qū)間上, ”.
時,則,
所以在區(qū)間上單調(diào)減,在區(qū)間上單調(diào)增.
當,即時,由,得,
從而.
當,即時,由,得,
從而.
綜上, 的取值范圍為區(qū)間.
(3)設(shè)函數(shù)在區(qū)間上的最大值為,最小值為,
所以“對任意的,都有”等價于“”.
①當, .
由,得.
從而.
②當, .
由,得.
從而.
③當, .
由,得.
從而.
④當, .
由,得.
從而.
綜上, 的取值范圍為區(qū)間.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若滿足:對任意的,都有恒成立,試確定實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點為,過點的直線與相交于、兩點,點關(guān)于軸的對稱點為.
(Ⅰ)判斷點是否在直線上,并給出證明;
(Ⅱ)設(shè),求的內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線:與直線()交于,兩點.
(1)當時,分別求在點和處的切線方程;
(2)軸上是否存在點,使得當變動時,總有?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地政府調(diào)查了工薪階層人的月工資收人,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖,其中工資收人分組區(qū)間是.(單位:百元)
(1)為了了解工薪階層對工資收人的滿意程度,要用分層抽樣的方法從調(diào)查的人中抽取人做電話詢問,求月工資收人在內(nèi)應(yīng)抽取的人數(shù);
(2)根據(jù)頻率分布直方圖估計這人的平均月工資為多少元.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)統(tǒng)計,某醫(yī)院一個結(jié)算窗口每天排隊結(jié)算的人數(shù)及相應(yīng)的概率如下:
排除人數(shù) | 0--5 | 6--10 | 11--15 | 16--20 | 21--25 | 25人以上 |
概率 | 0.1 | 0.15 | 0.25 | 0.25 | 0.2 | 0.05 |
(1)求每天超過20人排隊結(jié)算的概率;
(2)求2天中,恰有1天出現(xiàn)超過20人排隊結(jié)算的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A已知直線的參數(shù)方程為(為參數(shù)),在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,圓的方程為
(1)求圓的圓心的極坐標;
(2)判斷直線與圓的位置關(guān)系.
已知不等式的解集為
(1)求實數(shù)的值;
(2)若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表提供了某廠生產(chǎn)某產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸標準煤)的幾組對照數(shù)據(jù):
2 | 4 | 6 | 8 | 10 | |
4 | 5 | 7 | 9 | 10 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)根據(jù)(1)中求出的線性回歸方程,預測生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗是多少噸標準煤?
附:回歸直線的斜率和截距的最小二乘估計分別為: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com