【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(I)求圓的直角坐標(biāo)方程;
(II)若是直線與圓面的公共點(diǎn),求的取值范圍.
【答案】(Ⅰ);(Ⅱ) .
【解析】試題分析:(Ⅰ)利用極坐標(biāo)與直角坐標(biāo)的互化公式,即可求解圓的普通方程;
(Ⅱ)解法一:設(shè),將直線的參數(shù)方程代入,得,又由直線過,圓的半徑是,即求解的范圍,進(jìn)而得到的取值范圍;
解法二:求得直線與圓的交點(diǎn)為的坐標(biāo),由點(diǎn)在線段上,得的最大值和最小值,即可得到的取值范圍.
試題解析:
(Ⅰ)∵圓的極坐標(biāo)方程為
又,
∴圓的普通方程為
(Ⅱ)解法一:設(shè),圓的方程即,
∴圓的圓心是,半徑
將直線的參數(shù)方程(為參數(shù))代入,得
又∵直線過,圓的半徑是1,
,即的取值范圍是.
解法二:圓的方程即,
將直線的參數(shù)方程(為參數(shù))化為普通方程:
∴直線與圓的交點(diǎn)為和,故點(diǎn)在線段上
從而當(dāng)與點(diǎn)重合時, ;
當(dāng)與點(diǎn)重合時, .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知都是定義域?yàn)?/span>的連續(xù)函數(shù).已知:滿足:①當(dāng)時,恒成立;②都有.滿足:①都有;②當(dāng)時,.若關(guān)于的不等式對恒成立,則的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是我國2012年至2018年生活垃圾無害化處理量(單位:億噸)的折線圖.注:年份代碼1~7分別對應(yīng)年份2012~2018.
(1)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測2020年我國生活垃圾無害化處理量.
參考數(shù)據(jù):,,,.
參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計(jì)公式分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四個物體同時從某一點(diǎn)出發(fā)向同一個方向運(yùn)動,其路程關(guān)于時間的函數(shù)關(guān)系式分別為, , , ,有以下結(jié)論:
①當(dāng)時,甲走在最前面;
②當(dāng)時,乙走在最前面;
③當(dāng)時,丁走在最前面,當(dāng)時,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運(yùn)動下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號為 (把正確結(jié)論的序號都填上,多填或少填均不得分).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,C是圓O上不同于A,B的一點(diǎn),PA⊥平面ABC,E是PC的中點(diǎn),,PA=AC=1.
(1)求證:AE⊥PB;
(2)求三棱錐C-ABE的體積.
(3)求二面角A-PB-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校研究性學(xué)習(xí)小組從汽車市場上隨機(jī)抽取輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于公里和公里之間,將統(tǒng)計(jì)結(jié)果分成組:,,,,,繪制成如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)求續(xù)駛里程在的車輛數(shù);
(3)若從續(xù)駛里程在的車輛中隨機(jī)抽取輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com