【題目】甲、乙、丙、丁四個物體同時從某一點(diǎn)出發(fā)向同一個方向運(yùn)動,其路程關(guān)于時間的函數(shù)關(guān)系式分別為, , , ,有以下結(jié)論:
①當(dāng)時,甲走在最前面;
②當(dāng)時,乙走在最前面;
③當(dāng)時,丁走在最前面,當(dāng)時,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運(yùn)動下去,最終走在最前面的是甲.
其中,正確結(jié)論的序號為 (把正確結(jié)論的序號都填上,多填或少填均不得分).
【答案】③④⑤
【解析】試題分析:分別取特值驗(yàn)證命題①②;對數(shù)型函數(shù)的變化是先快后慢,當(dāng)x=1時甲、乙、丙、丁四個物體又重合,從而判斷命題③正確;指數(shù)函數(shù)變化是先慢后快,當(dāng)運(yùn)動的時間足夠長,最前面的動物一定是按照指數(shù)型函數(shù)運(yùn)動的物體,即一定是甲物體;結(jié)合對數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知命題④正確.
解:路程fi(x)(i=1,2,3,4)關(guān)于時間x(x≥0)的函數(shù)關(guān)系是:
,,f3(x)=x,f4(x)=log2(x+1),
它們相應(yīng)的函數(shù)模型分別是指數(shù)型函數(shù),二次函數(shù),一次函數(shù),和對數(shù)型函數(shù)模型.
當(dāng)x=2時,f1(2)=3,f2(2)=4,∴命題①不正確;
當(dāng)x=4時,f1(5)=31,f2(5)=25,∴命題②不正確;
根據(jù)四種函數(shù)的變化特點(diǎn),對數(shù)型函數(shù)的變化是先快后慢,當(dāng)x=1時甲、乙、丙、丁四個物體又重合,從而可知當(dāng)0<x<1時,丁走在最前面,當(dāng)x>1時,丁走在最后面,
命題③正確;
指數(shù)函數(shù)變化是先慢后快,當(dāng)運(yùn)動的時間足夠長,最前面的動物一定是按照指數(shù)型函數(shù)運(yùn)動的物體,即一定是甲物體,∴命題⑤正確.
結(jié)合對數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知丙不可能走在最前面,也不可能走在最后面,命題④正確.
故答案為:③④⑤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相.某大型超市進(jìn)行扶貧工作,按計(jì)劃每年六月從精準(zhǔn)扶貧戶中訂購荔枝,每天進(jìn)貨量相同且每公斤20元,售價為每公斤24元,未售完的荔枝降價處理,以每公斤16元的價格當(dāng)天全部處理完.根據(jù)往年情況,每天需求量與當(dāng)天平均氣溫有關(guān).如果平均氣溫不低于25攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫低于15攝氏度,需求量為公斤.為了確定6月1日到30日的訂購數(shù)量,統(tǒng)計(jì)了前三年6月1日到30日各天的平均氣溫數(shù)據(jù),得到如圖所示的頻數(shù)分布表:
平均氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
(Ⅰ)假設(shè)該商場在這90天內(nèi)每天進(jìn)貨100公斤,求這90天荔枝每天為該商場帶來的平均利潤(結(jié)果取整數(shù));
(Ⅱ)若該商場每天進(jìn)貨量為200公斤,以這90天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天該商場不虧損的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對某地區(qū)的一種傳染病與飲用水進(jìn)行抽樣調(diào)查發(fā)現(xiàn):飲用干凈水得病5人,不得病50人;飲用不干凈水得病9人,不得病22人。
(1)作出2×2列聯(lián)表
(2)能否有90%的把握認(rèn)為該地區(qū)中得傳染病與飲用水有關(guān)?
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(I)求圓的直角坐標(biāo)方程;
(II)若是直線與圓面的公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形為矩形, ,為的中點(diǎn),將沿折起,得到四棱錐,設(shè)的中點(diǎn)為,在翻折過程中,得到如下有三個命題:
①平面,且的長度為定值;
②三棱錐的最大體積為;
③在翻折過程中,存在某個位置,使得.
其中正確命題的序號為__________.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓恒過點(diǎn),且與直線相切.
(1)求圓心的軌跡方程;
(2)若過點(diǎn)的直線交軌跡于, 兩點(diǎn),直線, (為坐標(biāo)原點(diǎn))分別交直線于點(diǎn), ,證明:以為直徑的圓被軸截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司研發(fā)芯片耗費(fèi)資金2千萬元,現(xiàn)在準(zhǔn)備投入資金進(jìn)行生產(chǎn).經(jīng)市場調(diào)查與預(yù)測,生產(chǎn)A芯片的毛收入(平萬元)與投入的資金x(千萬元)成正比,已知每投入1千萬元,獲得毛收入0.25千萬元;生產(chǎn)B芯片的毛收入(千萬元)與投入的資金x(千萬元)的函數(shù)關(guān)系式為,其圖像如圖所示.
(1)試分別求出生產(chǎn)A,B兩種芯片的毛收入與投入資金的函數(shù)關(guān)系式.
(2)如果公司只生產(chǎn)一種芯片,生產(chǎn)哪種芯片毛收入更大?
(3)現(xiàn)在公司準(zhǔn)備投入4億元資金同時生產(chǎn)A,B兩種芯片,設(shè)投入x千萬元生產(chǎn)B芯片,用表示公司所獲利潤,當(dāng)x為多少時,可以獲得最大利潤?并求最大利潤.(利潤=A芯片毛收入+B芯片毛收入-研發(fā)耗費(fèi)資金)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有職工320人,平均每人每年可創(chuàng)利20萬元.該工廠打算購進(jìn)一批智能機(jī)器人(每購進(jìn)一臺機(jī)器人,將有一名職工下崗).據(jù)測算,如果購進(jìn)智能機(jī)器人不超過100臺,每購進(jìn)一臺機(jī)器人,所有留崗職工(機(jī)器人視為機(jī)器,不作為職工看待)在機(jī)器人的幫助下,每人每年多創(chuàng)利2千元,每臺機(jī)器人購置費(fèi)及日常維護(hù)費(fèi)用折合后平均每年2萬元,工廠為體現(xiàn)對職工的關(guān)心,給予下崗職工每人每年4萬元補(bǔ)貼;如果購進(jìn)智能機(jī)器人數(shù)量超過100臺,則工廠的年利潤萬元(x為機(jī)器人臺數(shù)且x<320).
(1)寫出工廠的年利潤y與購進(jìn)智能機(jī)器人臺數(shù)x的函數(shù)關(guān)系.
(2)為獲得最大經(jīng)濟(jì)效益,工廠應(yīng)購進(jìn)多少臺智能機(jī)器人?此時工廠的最大年利潤是多少?(參考數(shù)據(jù):)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com