【題目】已知圓.

(1)判斷圓與圓的位置關系,并說明理由;

(2)若過點的直線 與圓相切,求直線的方程.

【答案】(1)見解析(2)直線的方程為.

【解析】試題分析:(1)先求出兩圓圓心距,進而判斷兩圓的位置關系;(2)分類討論:當斜率不存在時方程為,符合題意;當直線 的斜率存在時,設直線 的方程為,再利用圓心到切線的距離等于半徑建立方程,從而求出 ,進而求得直線方程.

試題解析:

∵圓的標準方程是,
∴圓的圓心坐標為,半徑長為.又∵圓的圓心坐標為,半徑長為 ∴兩圓的圓心距為,兩圓的半徑之和為 ,∴圓與圓外切.

(2)當直線 的斜率不存在時,直線 的方程為,符合題意;
當直線 的斜率存在時,設直線的方程為 ,

.∵直線與圓相切,

∴圓心到直線的距離,即,解得,

∴直線的方程為,即.

綜上可知,直線的方程為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)談論函數(shù)的單調(diào)性;

(Ⅱ)若函數(shù)在區(qū)間內(nèi)任取有兩個不相等的實數(shù),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設p:實數(shù)x滿足,其中,命題實數(shù)滿足

|x-3|≤1 .

(1)若為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中中,側(cè)面為矩形, 的中點, 交于點,且平面

1)證明: ;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點.

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)恒成立,求實數(shù)的取值范圍;

(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓過坐標原點且圓心在曲線上.

(1)若圓分別與軸、軸交于點、(不同于原點),求證:的面積為定值;

(2)設直線與圓交于不同的兩點,且,求圓的方程;

(3)設直線(2)中所求圓交于點、為直線上的動點,直線,與圓的另一個交點分別為,,且在直線異側(cè),求證:直線過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期為π.

(Ⅰ)求f()的值;

(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過點、,并且直線平分圓.

)求圓的方程;

)若過點,且斜率為的直線與圓有兩個不同的交點.

)求實數(shù)的取值范圍;

)若,求的值.

查看答案和解析>>

同步練習冊答案