在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).若以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,則曲線C的極坐標(biāo)方程為.
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 求直線被曲線所截得的弦長.

(Ⅰ) (x-)2+(y-)2= 。
(Ⅱ)∣MN∣=∣t1-t2∣== 。

解析試題分析:(Ⅰ)由得:r=cosq+sinq
兩邊同乘以r得:r2=rcosq+rsinq
\x2+y2-x-y=0   即(x-)2+(y-)2=           5分
(Ⅱ) 將直線參數(shù)方程代入圓C的方程得: 5t2-21t+20=0
\t1+t2=,   t1t2=4
\∣MN∣=∣t1-t2∣==            10分
考點:本題主要考查簡單曲線的極坐標(biāo)方程,參數(shù)方程的應(yīng)用。
點評:中檔題,作為選考內(nèi)容,難度不大,關(guān)鍵是掌握極坐標(biāo)方程與直角坐標(biāo)方程的互化公式。(II)小題,典型的參數(shù)方程的應(yīng)用問題,通過“代入,整理,應(yīng)用韋達定理”,求得線段長度。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點,上、下焦點分別為、
向量.直線與橢圓交于兩點,線段中點為
(1)求橢圓的方程;
(2)求直線的方程;
(3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線
與區(qū)域有公共點,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線,
(1)化的方程為普通方程,并說明它們分別表示什么曲線?
(2)若上的點P對應(yīng)的參數(shù)為,Q為上的動點,求PQ的中點M到直線的距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知分別為橢圓的上、下焦點,其中也是拋物線的焦點,點在第二象限的交點,且。

(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(1,3)和圓,過點的動直線與圓相交于不同的兩點,在線段取一點,滿足:,)。
求證:點總在某定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點,其長軸、焦距和短軸的長的平方依次成等差數(shù)列.直線軸正半軸和軸分別交于點、,與橢圓分別交于點,各點均不重合且滿足
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,試證明:直線過定點并求此定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的右焦點為,右準(zhǔn)線為,離心率為,點在橢圓上,以為圓心,為半徑的圓與的兩個公共點是

(1)若是邊長為的等邊三角形,求圓的方程;
(2)若三點在同一條直線上,且原點到直線的距離為,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面上動點P()及兩個定點A(-2,0),B(2,0),直線PA、PB的斜率分別為、 且
(I)求動點P所在曲線C的方程。
(II)設(shè)直線與曲線C交于不同的兩點M、N,當(dāng)OM⊥ON時,求點O到直線的距離。(O為坐標(biāo)原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的離心率為,右準(zhǔn)線方程為。
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線與雙曲線C交于不同的兩點AB,且線段AB的中點在圓上,求實數(shù)m的值。  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

由直線上的點向圓C:引切線,
求切線段長的最小值。

查看答案和解析>>

同步練習(xí)冊答案