已知數(shù)列滿足,且前n項(xiàng)和為則滿足不等式的最小整數(shù)n是(    )
A.5B.6C.7D.8
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)把正奇數(shù)列中的數(shù)按上小下大,左小右大的原則排列成如圖“三角形”所示的數(shù)表.設(shè)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第行,從左向右數(shù)第個(gè)數(shù).
(1)若,求的值;
(2)已知函數(shù)的反函數(shù)為,),若記三角形數(shù)表中從上往下數(shù)第行各數(shù)的和為
①求數(shù)列的前項(xiàng)的和
②令設(shè)的前項(xiàng)之積為
,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知:對(duì)于數(shù)列,定義為數(shù)列的一階差分?jǐn)?shù)列,其中, 。1)若數(shù)列的通項(xiàng)公式),求:數(shù)列的通項(xiàng)公式;  (2)若數(shù)列的首項(xiàng)是1,且滿足, 
① 設(shè),求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;   
、谇螅簲(shù)列的通項(xiàng)公式及前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{}滿足條件:=1,=2+1,nN﹡.
(Ⅰ)求證:數(shù)列{+1}為等比數(shù)列;
(Ⅱ)令,是數(shù)列{}的前n項(xiàng)和,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知f(x)=ln(1+x)-x.
(Ⅰ)求f(x)的最大值;
(Ⅱ)數(shù)列{an}滿足:an+1= 2f' (an) +2,且a1=2.5,= bn,
⑴數(shù)列{ bn+}是等比數(shù)列    ⑵判斷{an}是否為無窮數(shù)列。
(Ⅲ)對(duì)nN*,用⑴結(jié)論證明:ln(1++)<;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
設(shè)數(shù)列{an}滿足a1=1,an=
(1)求a2、a3、a4、a5;
(2)歸納猜想數(shù)列的通項(xiàng)公式an,并用數(shù)學(xué)歸納法證明;
(3)設(shè)bn={anan+1},求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知正項(xiàng)等差數(shù)列的前20項(xiàng)的和為100,那么的最大值為     (    )
A.25B.50C.100D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列為等差數(shù)列,其前項(xiàng)和為,已知,若對(duì)任意,都有成立,則的值為                         (    )
A.22B.21C.20D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列的前n項(xiàng)和為,若 ,則當(dāng)取最小值時(shí),
n等于(    )
A.6B.7C.8D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案