【題目】設(shè)函數(shù),,其中,是自然對數(shù)的底數(shù).
(1)設(shè),當(dāng)時,求的最小值;
(2)證明:當(dāng),時,總存在兩條直線與曲線與都相切;
(3)當(dāng)時,證明:.
【答案】(1)最小值(2)證明見解析(3)證明見解析
【解析】
(1)求出的解析式,求導(dǎo)求單調(diào)性,然后則可求出最小值.(2)總存在兩條直線與曲線與都相切,及與永遠(yuǎn)都存在兩條公切線,分別設(shè)出切點求出切線方程,根據(jù)切線方程為同一條,列出方程組求解,證明等式恒成立即可. (3)即證明當(dāng)時,.令,求導(dǎo)求令的最小值大于0即可.
解:(1),,
當(dāng)時,,單調(diào)遞減;
當(dāng)時,,單調(diào)遞增,
故時,取得最小值.
(2)∵,
∴在點處的切線方程為;
∵,
∴在點處的切線方程為.
由題意得,則.
令,則,
由(1)得時,單調(diào)遞增,又,時,,
∴當(dāng)時,,單調(diào)遞減;
當(dāng)時,,單調(diào)遞增.
由(1)得,
又,
,所以函數(shù)在和內(nèi)各有一個零點,
故當(dāng)時,總存在兩條直線與曲線與都相切.
(3).
令,以下證明當(dāng)時,的最小值大于0.
求導(dǎo)得.
①當(dāng)時,,;
②當(dāng)時,,
令,,
又,取且使,即,
則,
∵,故存在唯一零點,
即有唯一的極值點且為極小值點,又,
且,即,故,
∵,故是上的減函數(shù).
∴,所以.
綜上,當(dāng)時,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中.
(1)討論函數(shù)的單調(diào)性;
(2)函數(shù)在處存在極值-1,且時,恒成立,求實數(shù)的最大整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】螞蟻森林是支付寶客戶端為首期“碳賬戶”設(shè)計的一款公益行動:用戶通過步行、地鐵出行、在線繳納水電煤氣費(fèi)、網(wǎng)絡(luò)掛號、網(wǎng)絡(luò)購票等行為就會減少相應(yīng)的碳排放量,可以用來在支付寶里養(yǎng)一棵虛擬的樹.這棵樹長大后,公益組織、環(huán)保企業(yè)等螞蟻生態(tài)伙伴們可以在現(xiàn)實沙漠化地區(qū)(阿拉善、通遼、庫布齊等)種下一棵實體的樹目前通遼地區(qū)對部分基地樟子松幼苗的培育技術(shù)進(jìn)行了改進(jìn),為了了解改進(jìn)后的效果,現(xiàn)從改進(jìn)前后的樹苗培育基地各抽取了株產(chǎn)品作為樣本,檢測其同樣生長周期的高度(單位:),若高度不低于才適合移植,否則繼續(xù)等待生長圖1是改進(jìn)前的樣本的頻率分布直方圖,表2是改進(jìn)后的樣本頻率分布表.
圖1
表2技術(shù)改進(jìn)后樣本的頻率分布表
高度 | 頻數(shù) |
(1)根據(jù)圖1和表2提供的信息,試從移植率的角度對培育技術(shù)改進(jìn)前后的優(yōu)劣進(jìn)行比較;
(2)估計培育技術(shù)未改進(jìn)的基地樹苗高度的平均數(shù);
(3)在市場中,規(guī)定高度在內(nèi)的為三等苗,內(nèi)的為二等苗,內(nèi)的為一等苗.現(xiàn)從表2高度不低于的樹苗樣本中采用分層抽樣的方法抽取株,再從這株幼苗中隨機(jī)抽取株,求這株中一、二、三等苗都有的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)在內(nèi)單調(diào)遞增;
(2)記為函數(shù)的反函數(shù).若關(guān)于的方程在上有解,求的取值范圍;
(3)若對于恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中是自然對數(shù)的底數(shù),是函數(shù)的導(dǎo)數(shù).
(1)若是上的單調(diào)函數(shù),求的值;
(2)當(dāng)時,求證:若,且,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖(1)為東方體育中心,其設(shè)計方案側(cè)面的外輪廓線如圖(2)所示;曲線是以點為圓心的圓的一部分,其中,曲線是拋物線的一部分;且恰好等于圓的半徑,與圓相切且.
(1)若要求米,米,求與的值;
(2)當(dāng)時,若要求不超過45米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長是短軸長的兩倍,焦距為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)不過原點的直線與橢圓交于兩點、,且直線、、的斜率依次成等比數(shù)列,問:直線是否定向的,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的一個頂點為,焦點在x軸上,若右焦點到直線的距離為3.
Ⅰ求橢圓C的方程;
Ⅱ設(shè)橢圓C與直線相交于不同的兩點M,N,線段MN的中點為E.
當(dāng)時,射線OE交直線于點為坐標(biāo)原點,求的最小值;
當(dāng),且時,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com