如圖,已知橢圓的離心率是,分別是橢圓的左、右兩個頂點,點是橢圓的右焦點。點軸上位于右側(cè)的一點,且滿足

(1)求橢圓的方程以及點的坐標;
(2)過點軸的垂線,再作直線與橢圓有且僅有一個公共點,直線交直線于點.求證:以線段為直徑的圓恒過定點,并求出定點的坐標.
(1);(2)定點坐標為,證明見詳解.

試題分析:(1)設(shè),然后利用建立關(guān)于的方程,然后利用得到的方程,兩方程結(jié)合消去可得到的關(guān)系,再由條件中的離心率得到的關(guān)系,進行通過解方程組可求得的值,進行可求得橢圓的方程,以及點的坐標;(2)設(shè).將直線代入橢圓方程消去的得到的二次方程,利用韋達定理可利用表示點的坐標.又設(shè)以線段為直徑的圓上任意一點,然后利用可求得圓的方程,再令,取時滿足上式,故過定點
試題解析:(1),設(shè),

,
于是,
,
,橢圓,且
(2),設(shè),由
,
由于(*),
而由韋達定理:,
,
設(shè)以線段為直徑的圓上任意一點,

,
由對稱性知定點在軸上,令,取時滿足上式,故過定點
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)雙曲線C:(a>0,b>0)的一個焦點坐標為(,0),離心率, A、B是雙曲線上的兩點,AB的中點M(1,2).
(1)求雙曲線C的方程;
(2)求直線AB方程;
(3)如果線段AB的垂直平分線與雙曲線交于C、D兩點,那么A、B、C、D四點是否共圓?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C1:+=1(a>b>0)的左、右頂點分別為A,B,點P是雙曲線C2:-=1在第一象限內(nèi)的圖象上一點,直線AP,BP與橢圓C1分別交于C,D點,若S△ACD=S△PCD.

(1)求P點的坐標.
(2)能否使直線CD過橢圓C1的右焦點,若能,求出此時雙曲線C2的離心率;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的對稱軸為坐標軸,焦點是,又點在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)已知點,過點的直線與過點的直線相交于點,設(shè)直線的斜率為,直線的斜率為,如果,求點的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長線相交于點,則.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C=1(ab>0)的離心率為,一條準線lx=2.
(1)求橢圓C的方程;
(2)設(shè)O為坐標原點,Ml上的點,F為橢圓C的右焦點,過點FOM的垂線與以OM為直徑的圓D交于P,Q兩點.
①若PQ,求圓D的方程;
②若Ml上的動點,求證點P在定圓上,并求該定圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,過點A(-2,-1)橢圓C=1(ab>0)的左焦點為F,短軸端點為B1、B2,=2b2.
(1)求ab的值;
(2)過點A的直線l與橢圓C的另一交點為Q,與y軸的交點為R.過原點O且平行于l的直線與橢圓的一個交點為P.若AQ·AR=3OP2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓,過橢圓上一點作傾斜角互補的兩條直線、,分別交橢圓、兩點.則直線的斜率為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)雙曲線的虛軸長為2,焦距為,則雙曲線的漸近線方程為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案