【題目】設(shè)函數(shù) ,其中
,若存在唯一的整數(shù)
,使得
,則
的取值范圍是( )
A.
B.
C.
D.
【答案】A
【解析】設(shè) .
恒過(
,
恒過(1,0)
因?yàn)榇嬖谖ㄒ坏恼麛?shù) ,使得
,所以存在唯一的整數(shù)
,使得
在直線
下方.
因?yàn)? ,
所以當(dāng) 時,
,
單調(diào)遞減;
當(dāng) 時,
,
單調(diào)遞增.
所以 .作出函數(shù)圖象如圖所示:
根據(jù)題意得: ,解得:
.
故答案為:A.
根據(jù)題目中所給的條件的特點(diǎn),先構(gòu)造函數(shù)g(x)=ex(2x-1),h(x)=mx-m,將原問題轉(zhuǎn)化為:存在唯一的整數(shù)x0使得g(x0)在直線y=mx-m的下方.最后利用導(dǎo)數(shù)知識求函數(shù)的極值,結(jié)合圖形可得關(guān)于字母m的不等關(guān)系,解關(guān)于m的不等式組可得m 的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).
(Ⅰ)求曲線 和直線
的普通方程;
(Ⅱ)若點(diǎn) 為曲線
上一點(diǎn),求點(diǎn)
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)),設(shè)
與
的交點(diǎn)為
,當(dāng)
變化時,
的軌跡為曲線
.
(1)寫出 的普遍方程及參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線
的極坐標(biāo)方程為
,
為曲線
上的動點(diǎn),求點(diǎn)
到
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系 中,以原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,圓
的極坐標(biāo)方程為
.
(1)將圓 的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過點(diǎn)
作斜率為1直線
與圓
交于
兩點(diǎn),試求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 與直線
相切.
(1)若直線 與圓
交于
兩點(diǎn),求
;
(2)設(shè)圓 與
軸的負(fù)半軸的交點(diǎn)為
,過點(diǎn)
作兩條斜率分別為
的直線交圓
于
兩點(diǎn),且
,試證明直線
恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合U=R,A={x|x2-x-2<0},B={x|y=ln(1-x)},則圖中陰影部分所表示的集合是( )
A.{x|x≥1}
B.{x|1≤x<2}
C.{x|0<x≤1}
D.{x|x≤1}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com