【題目】集合U=R,A={x|x2x-2<0},B={x|y=ln(1-x)},則圖中陰影部分所表示的集合是( )

A.{x|x≥1}
B.{x|1≤x<2}
C.{x|0<x≤1}
D.{x|x≤1}

【答案】B
【解析】A={x|x2x-2<0}= , B={x|y=ln(1-x)}= , 圖中陰影部分所表示的集合是
所以答案是:B
【考點(diǎn)精析】根據(jù)題目的已知條件,利用交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,其中 ,若存在唯一的整數(shù) ,使得 ,則 的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的四個(gè)頂點(diǎn)組成的四邊形的面積為 ,且經(jīng)過(guò)點(diǎn)

(1)求橢圓 的方程;
(2)若橢圓 的下頂點(diǎn)為 ,如圖所示,點(diǎn) 為直線 上的一個(gè)動(dòng)點(diǎn),過(guò)橢圓 的右焦點(diǎn) 的直線 垂直于 ,且與 交于 兩點(diǎn),與 交于點(diǎn) ,四邊形 的面積分別為 .求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖的程序框圖,如果輸入的a=﹣1,則輸出的S=( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若執(zhí)行右側(cè)的程序框圖,當(dāng)輸入的x的值為4時(shí),輸出的y的值為2,則空白判斷框中的條件可能為(
A.x>3
B.x>4
C.x≤4
D.x≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)判斷函數(shù) 的奇偶性.
(2)求 的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 是直角梯形, , , 平面

(Ⅰ) 上是否存在點(diǎn) 使 平面 ,若存在,指出 的位置并證明,若不存在,請(qǐng)說(shuō)明理由;(Ⅱ)證明: ;
(Ⅲ)若 ,求點(diǎn) 到平面 的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱柱為長(zhǎng)方體,點(diǎn)上的一點(diǎn).

(1)若的中點(diǎn),當(dāng)為何值時(shí),平面平面

(2)若, ,當(dāng)時(shí),直線與平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,過(guò)的直線交拋物線于點(diǎn),當(dāng)直線的傾斜角是時(shí), 的中垂線交軸于點(diǎn).

(1)求的值;

(2)以為直徑的圓交軸于點(diǎn),記劣弧的長(zhǎng)度為,當(dāng)直線點(diǎn)旋轉(zhuǎn)時(shí),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案