“拋階磚”是國(guó)外游樂(lè)場(chǎng)的典型游戲之一.參與者只須將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個(gè)階磚(邊長(zhǎng)為2.1的正方形)的范圍內(nèi)(不與階磚相連的線重疊),便可獲大獎(jiǎng).不少人被高額獎(jiǎng)金所吸引,紛紛參與此游戲但很少有人得到獎(jiǎng)品,請(qǐng)用所學(xué)的概率知識(shí)解釋這是為什么.
在拋階磚游戲中,首先可以判定此試驗(yàn)為幾何概型,我們?yōu)榱嗣枋雒恳淮坞S機(jī)試驗(yàn)的結(jié)果只需要確定金幣圓心O的位置即可,一旦圓心位置確定,只要當(dāng)圓心O到其最近正方形的各邊的距離大于其半徑時(shí),便可獲大獎(jiǎng).由此不難想到一種臨界狀態(tài),就是當(dāng)金幣與正方形的一邊相切時(shí),此時(shí)圓心O到該邊的距離為1,顯然只有當(dāng)圓心O到最近正方形的各邊的距離大于1時(shí)才能獲獎(jiǎng),所以若中獎(jiǎng),金幣圓心必位于小正方形區(qū)域A內(nèi).若中獎(jiǎng),金幣圓心必位于下圖的小正方形區(qū)域A內(nèi).圓心隨機(jī)地落在“階磚”的任何位置,所以這是一個(gè)幾何概型.其概率為
≈0.0022.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
矩形ABCD中,
. 在該矩形內(nèi)任取一點(diǎn)P,則
的概率為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
如圖,在矩形區(qū)域ABCD的A,C兩點(diǎn)處各有一個(gè)通信基站,假設(shè)其信號(hào)的覆蓋范圍分別是扇形區(qū)域ADE和扇形區(qū)域CBF(該矩形區(qū)域內(nèi)無(wú)其他信號(hào)來(lái)源,基站工作正常).若在該矩形區(qū)域內(nèi)隨機(jī)地選一地點(diǎn),則該地點(diǎn)無(wú)信號(hào)的概率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
從
中任取一個(gè)數(shù)
,從
中任取一個(gè)數(shù)
,則使
的概率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
如圖,設(shè)區(qū)域
,向區(qū)域
內(nèi)隨機(jī)投一點(diǎn),且投入到區(qū)域內(nèi)任一點(diǎn)都是等可能的,則點(diǎn)落入到陰影區(qū)域
的概率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知關(guān)于x的一元二次方程x2-2(a-2)x-b2+16=0.
(1)若a、b是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程沒(méi)有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知函數(shù):
,其中:
,記函數(shù)
滿足條件:
的事件為A,則事件A發(fā)生的概率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
在區(qū)間[-2,4]上隨機(jī)地取一個(gè)數(shù)x,若x滿足|x|≤m的概率為
,則m=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
在圓x2+y2=4所圍成的區(qū)域內(nèi)隨機(jī)取一個(gè)點(diǎn)P(x,y),則|x|+|y|≤2的概率為_(kāi)_______.
查看答案和解析>>