【題目】為了豐富改善居民生活,市招商局引進(jìn)外商到開發(fā)區(qū)一次性投資72萬元建起了一座蔬菜加工廠.以后每年還需要繼續(xù)投資:第一年需要要各種經(jīng)費為12萬元,從第二年開始每年所需經(jīng)費均比上一年增加4萬元,該加工廠每年銷售總收入為50萬元.

(1)若扣除投資及各種經(jīng)費,該加工廠從第幾年開始純利潤為正?

(2)若干年后,外商為開發(fā)新項目,對加工廠有兩種處理方案:

若年平均純利潤達(dá)到最大值時,便以48萬元價格出售該廠;

若純利潤總和達(dá)到最大值時,便以16萬元的價格出售該廠.

問:哪一種方案比較合算?說明理由.

【答案】(1)從第三年開始獲利;(2)見解析

【解析】分析:(1)利潤總額年中的收入減去年所需各種經(jīng)費,解出結(jié)果進(jìn)行判斷得出何年開始贏利;(2)利用基本不等式算出第一種方案總盈利,利用二次函數(shù)性質(zhì)算出第二種方案的總盈利,得到每一種方案的總盈利,比較大小選擇方案.

詳解:由題設(shè)知,每年的經(jīng)費是以12首項,4為公差的等差數(shù)列。設(shè)純利潤與年數(shù)的關(guān)系為,

(1)獲純利潤為正,即,即,即.

,所以,即從第三年開始獲利;

(2)①年平均純利潤為,

,當(dāng)且僅當(dāng)時取等號,此時,

這樣以第一種方案共獲利萬元;

若純利潤總和,所以時,純利潤總和達(dá)到最大值,此時共獲利萬元;

由上可知,兩種方案獲利相同,但是第一種方案需要時間比第二種方案需要時間少得多,故選擇第一種方案較好.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線 (a>0,b>0)的左焦點為F1 , 左頂點為A,過F1作x軸的垂線交雙曲線于P、Q兩點,過P作PM垂直QA于M,過Q作QN垂直PA于N,設(shè)PM與QN的交點為B,若B到直線PQ的距離大于a+ ,則該雙曲線的離心率取值范圍是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程)
已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距,汽車從甲地行駛到乙地,速度不得超過,已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度 ()的平方成正比,比例系數(shù)為,固定部分為元,

(1)把全程運輸成本(元)表示為速度()的函數(shù),指出定義域;

(2)為了使全程運輸成本最小,汽車應(yīng)以多大速度行駛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的奇函數(shù)滿足,且在上是減函數(shù), , 是銳角三角形的兩個內(nèi)角,則的大小關(guān)系是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某水仙花經(jīng)營部每天的房租、水電、人工等固定成本為1000,每盆水仙花的進(jìn)價是10,銷售單價() ()與日均銷售量()的關(guān)系如下表,并保證經(jīng)營部每天盈利

20

35

40

50

400

250

200

100

20

35

40

50

400

250

200

100

(Ⅰ) 在所給的坐標(biāo)圖紙中根據(jù)表中提供的數(shù)據(jù),描出實數(shù)對的對應(yīng)點,并確定的函數(shù)關(guān)系式

(Ⅱ)求出的值,并解釋其實際意義;

(Ⅲ)請寫出該經(jīng)營部的日銷售利潤的表達(dá)式并回答該經(jīng)營部怎樣定價才能獲最大日銷售利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題 , ,命題 ,使得 .若“ 為真”,“ 為假”,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結(jié)論:x+ ≥n+1(n∈N*),則a=(
A.2n
B.3n
C.n2
D.nn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系下,已知直線 ( )和圓 .圓 與直線 的交點為 .
(1)求圓 的直角坐標(biāo)方程,并寫出圓 的圓心與半徑.
(2)求 的面積.

查看答案和解析>>

同步練習(xí)冊答案