【題目】下列有關(guān)命題的說法中錯誤的是( )

A. 為真命題,則中至少有一個為真命題.

B. 命題:“若是冪函數(shù),則的圖象不經(jīng)過第四象限”的否命題是假命題.

C. 命題“,有”的否定形式是“,有”.

D. 若直線和平面,滿足.則“” 是“”的充分不必要條件.

【答案】C

【解析】

A.根據(jù)復(fù)合命題真假關(guān)系進行判斷即可;

B.根據(jù)逆否命題的等價性判斷命題的逆命題為假命題即可;

C.根據(jù)全稱命題的否定是特稱命題進行判斷;

D.根據(jù)線面平行的判定定理及性質(zhì)定理進行判斷.

對于A,為真命題,則中至少有一個為真命題.正確;

對于B,命題的逆命題是若y=f(x)的圖象不經(jīng)過第四象限,則y=f(x)是冪函數(shù),錯誤比如函數(shù)y=2x的函數(shù)圖象不經(jīng)過第四象限,滿足條件,但函數(shù)f(x)是指數(shù)函數(shù),故命題的逆命題是假命題,則命題的否命題也是假命題,正確;

對于C,命題“n∈N*,f(n)∈N*且f(n)n”的否定形式是“n0∈N*,f(n0N*或f(n0)>n0,錯誤;

對于D,若直線和平面,滿足.則“” 是“”的充分不必要條件,正確,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的導(dǎo)函數(shù),討論的單調(diào)性;

(2)若是自然對數(shù)的底數(shù)),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,若有兩個零點,則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個不相等的非零向量,兩組向量,,,,,均有23按照某種順序排成一列所構(gòu)成,記,且表示所有可能取值中的最小值,有以下結(jié)論:①有5個不同的值;②若,則無關(guān);③ ,則無關(guān);④ ,則;⑤若,且,則的夾角為;正確的結(jié)論的序號是(

A.①②④B.②④C.②③D.①⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于下列結(jié)論:

①函數(shù)是偶函數(shù);

②直線是函數(shù)的圖象的一條對稱軸;

③將函數(shù)的圖象向左平移個單位后,所得圖象的函數(shù)解析式為;

④函數(shù)的圖象關(guān)于點成中心對稱.

其中所有正確結(jié)論的序號為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了測量某塔的高度,某人在一條水平公路兩點進行測量.在點測得塔底在南偏西,塔頂仰角為,此人沿著南偏東方向前進10米到點,測得塔頂?shù)难鼋菫?/span>,則塔的高度為( )

A. 5米B. 10米C. 15米D. 20米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后平均每人每年創(chuàng)造利潤為萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高

(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?

(2)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤條件下,若要求調(diào)整出的員工創(chuàng)造出的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則的取值范圍是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)某種商品噸,此時所需生產(chǎn)費用為()萬元,當(dāng)出售這種商品時,每噸價格為萬元,這里為常數(shù),

1)為了使這種商品的生產(chǎn)費用平均每噸最低,那么這種商品的產(chǎn)量應(yīng)為多少噸?

2)如果生產(chǎn)出來的商品能全部賣完,當(dāng)產(chǎn)量是120噸時企業(yè)利潤最大,此時出售價格是每噸160萬元,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象的頂點坐標(biāo)為,且過坐標(biāo)原點.數(shù)列的前項和為,點在二次函數(shù)的圖象上.

)求數(shù)列的通項公式;

)設(shè),數(shù)列的前項和為,若恒成立,求實數(shù)的取值范圍;

)在數(shù)列中是否存在這樣一些項:,這些項都能夠構(gòu)成以為首項,為公比的等比數(shù)列?若存在,寫出關(guān)于的表達式;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案