已知不等式x2-x-m+1>0.
(1)當(dāng)m=3時(shí)解此不等式;
(2)若對(duì)于任意的實(shí)數(shù)x,此不等式恒成立,求實(shí)數(shù)m的取值范圍.
分析:(1)當(dāng)m=3時(shí),不等式x2-x-2>0,解可得答案;
(2)不等式x2-x-m+1>0對(duì)任意實(shí)數(shù)x恒成立,設(shè)y=x2-x-m+1,再利用大于0恒成立須滿足的條件:開(kāi)口向上,判別式小于0來(lái)解m的取值范圍.
解答:解:(1)當(dāng)m=3時(shí),
不等式x2-x-2>0
解得:x∈(-∞,-1)∪(2,+∞)
(2)設(shè)y=x2-x-m+1
∵不等式x2-x-m+1>0對(duì)于任意的x都成立
∴對(duì)?x∈R,y>0恒成立
∴△=12+4(m-1)<0
m∈(-∞,
3
4
)

故實(shí)數(shù)m的取值范圍m∈(-∞,
3
4
)
點(diǎn)評(píng):本題考查了一次函數(shù)和二次函數(shù)的恒成立問(wèn)題.本題的關(guān)鍵在于“轉(zhuǎn)化”,先將不等式恒成立轉(zhuǎn)化為函數(shù)恒成立問(wèn)題,再利用二次函數(shù)與x軸無(wú)交點(diǎn)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淄博一模)已知不等式x2-x≤0的解集為M,且集合N={x|-1<x<1},則M∩N為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知不等式x2-x-m+1>0.
(1)當(dāng)m=3時(shí)解此不等式;
(2)若對(duì)于任意的實(shí)數(shù)x,此不等式恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省淄博市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

已知不等式x2-x≤0的解集為M,且集合N={x|-1<x<1},則M∩N為( )
A.[0,1)
B.(0,1)
C.[0,1]
D.(-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省清遠(yuǎn)市華僑中學(xué)高三(上)數(shù)學(xué)練習(xí)試卷(文科)(解析版) 題型:解答題

已知不等式x2-x-m+1>0.
(1)當(dāng)m=3時(shí)解此不等式;
(2)若對(duì)于任意的實(shí)數(shù)x,此不等式恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案