【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如表:

(1)請將上表數(shù)據(jù)補充完整,并直接寫出函數(shù)f(x)的解析式.

(2)將y=f(x)圖象上所有點向左平行移動θ(θ>0)個單位長度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個對稱中心為,求θ的最小值.

【答案】(

【解析】試題分析:(1)根據(jù)表中已知數(shù)據(jù),解得A=5,ω=2φ=-.從而可補全數(shù)據(jù),解得函數(shù)表達式為2)由()及函數(shù)y=Asinωx+φ)的圖象變換規(guī)律得gx=5sin2x+2θ-).令2x+2θ-=kπ,解得,kZ.令,解得,kZ.由θ0可得解

試題解析:()根據(jù)表中已知數(shù)據(jù),解得. 數(shù)據(jù)補全如下表:

且函數(shù)表達式為.............6

)由()知,得.

因為的對稱中心為, .

,解得.

由于函數(shù)的圖象關于點成中心對稱,令,

解得, . 可知,當時, 取得最小值..............12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1在區(qū)間上畫出函數(shù)的圖象

2設集合,試判斷集合之間的關系,并給出證明;

3,求證在區(qū)間,的圖象位于函數(shù)圖象的上方

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,且,數(shù)列為等差數(shù)列,且 .

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,四邊形為正方形,點分別為線段上的點,

1求證:平面平面

2求證:當點不與點重合時,平面

3時,求點到直線距離的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元。該公司第n年需要付出設備的維修和工人工資等費用的信息如下圖。

;

引進這種設備后,第幾年后該公司開始獲利;

這種設備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在數(shù)列{an}中,Sn為其前n項和,若an>0,且4Sn=an2+2an+1(n∈N*),數(shù)列{bn}為等比數(shù)列,公比q>1,b1=a1,且2b2,b4,3b3成等差數(shù)列.

(1)求{an}與{bn}的通項公式;

(2)令cn= ,若{cn}的前項和為Tn,求證:Tn<6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是拋物線的焦點, 若點,

1)求的值;

2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

時,求函數(shù)的單調(diào)區(qū)間;

若函數(shù)的圖象在點處的切線的傾斜角為,函數(shù)當且僅當在處取得極值,其中的導函數(shù),求取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知矩形中,,分別在上,且,沿將四邊形折成四邊形,使點在平面上的射影在直線上,且.

1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案