【題目】已知函數(shù), ,其中, .

(1)若的一個極值點為,求的單調(diào)區(qū)間與極小值;

(2)當(dāng)時, , ,且上有極值,求的取值范圍.

【答案】(1)見解析(2)

【解析】試題分析: (1)求導(dǎo),由題意,可得,下來按照求函數(shù)的單調(diào)區(qū)間與極值的一般步驟求解即可;

(2)當(dāng)時, ,求導(dǎo),酒紅色的單調(diào)性可得,進(jìn)而得到.

, ,分類討論,可得時, 上無極值.

,通過討論的單調(diào)性,可得 ,或 ,可得的取值范圍.

試題解析:(1),

, .

, ,

;令.

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為, .

的極小值為.

(2)當(dāng)時, ,

,得 上遞減;

,得, 上遞增.

, , , .

, ,

(i)若,則, 上遞增, 上無極值.

(ii)若,則, 上遞減, 上無極值.

(iii)若, 上遞減,在上遞增,

,或 ,

, .

綜上, 的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,左、右頂點分別為為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為.設(shè)點,連接PA交橢圓于點C,坐標(biāo)原點為O.

(I)求橢圓E的方程;

(II)若三角形ABC的面積不大于四邊形OBPC的面積,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出定義:若m﹣ <x≤m+ (其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m,設(shè)函數(shù)f(x)=x﹣{x},二次函數(shù)g(x)=ax2+bx,若函數(shù)y=f(x)與y=g(x)的圖象有且只有一個公共點,則a,b的取值不可能是(
A.a=﹣4,b=1
B.a=﹣2,b=﹣1
C.a=4,b=﹣1
D.a=5,b=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是拋物線的焦點, 若點,

1)求的值;

2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,M為DD1的中點,O為底面ABCD的中心,P為棱A1B1上任意一點,則直線OP與直線AM所成的角是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.

(1)求證:PO⊥平面ABCD;
(2)求異面直線PB與CD所成角的余弦值;
(3)線段AD上是否存在點Q,使得它到平面PCD的距離為 ?若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且 bcosA=asinB.
(1)求角A的大小;
(2)若a=6,△ABC的面積是9 ,求三角形邊b,c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列{an}滿足a2﹣a1>a3﹣a2>a4﹣a3>…>an+1﹣an>…,則稱數(shù)列{an}為“差遞減”數(shù)列,若數(shù)列{an}是“差遞減”數(shù)列,且其通項an與其前n項和Sn(n∈N*)滿足2Sn=3an+2λ﹣1(n∈N*),則實數(shù)λ的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案