【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.
【答案】解:(Ⅰ)已知等式利用正弦定理化簡得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
∵sinC≠0,sin(A+B)=sinC
∴cosC= ,
又0<C<π,
∴C= ;
(Ⅱ)由余弦定理得7=a2+b2﹣2ab ,
∴(a+b)2﹣3ab=7,
∵S= absinC= ab= ,
∴ab=6,
∴(a+b)2﹣18=7,
∴a+b=5,
∴△ABC的周長為5+
【解析】(Ⅰ)已知等式利用正弦定理化簡,整理后利用兩角和與差的正弦函數公式及誘導公式化簡,根據sinC不為0求出cosC的值,即可確定出出C的度數;(Ⅱ)利用余弦定理列出關系式,利用三角形面積公式列出關系式,求出a+b的值,即可求△ABC的周長.
科目:高中數學 來源: 題型:
【題目】將邊長為2正方形ABCD沿對角線BD折成直二面角A﹣BD﹣C,有如下四個判斷:
①AC⊥BD
②AB與平面BCD所成60°角
③△ABC是等邊三角形
④若A、B、C、D四點在同一個球面上,則該球的表面積為8π
其中正確判斷的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知拋物線y2=4x,過點P(2,0)作斜率分別為k1 , k2的兩條直線,與拋物線相交于點A、B和C、D,且M、N分別是AB、CD的中點
(1)若k1+k2=0, ,求線段MN的長;
(2)若k1k2=﹣1,求△PMN面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的頂點與焦點分別是橢圓 =1(a>b>0)的焦點與頂點,若雙曲線的兩條漸近線與橢圓的交點構成的四邊形恰為正方形,則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司即將推車一款新型智能手機,為了更好地對產品進行宣傳,需預估市民購買該款手機是否與年齡有關,現隨機抽取了50名市民進行購買意愿的問卷調查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調查結果用莖葉圖表示如圖所示.
(1)根據莖葉圖中的數據完成列聯表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?
購買意愿強 | 購買意愿弱 | 合計 | |
20~40歲 | |||
大于40歲 | |||
合計 |
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,記抽到的2人中年齡大于40歲的市民人數為,求的分布列和數學期望.
附: .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com