【題目】在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥平面ABCD,AB=PD=a,E為側(cè)棱PC的中點(diǎn),又作DF⊥PB交PB于點(diǎn)F,則PB與平面EFD所成角為( )
A.90°
B.60°
C.45°
D.30°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是被嚴(yán)重破壞的頻率分布表和頻率分布直方圖,根據(jù)殘表和殘圖,則 p= , q= .
分?jǐn)?shù)段 | 頻數(shù) | |
[60,70) | p | |
[70,80) | 90 | |
[80,90) | 60 | |
[90,100] | 20 | q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)判斷f(x)的奇偶性;
(2)用單調(diào)性的定義證明f(x)為R上的增函數(shù);
(3)若對(duì)任意的t∈R,不等式f(mt2+1)+f(1﹣mt)>0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=4x+a2x+b,
(1)若f(0)=1,f(﹣1)=﹣ ,求f(x)的解析式;
(2)由(1)當(dāng)0≤x≤2時(shí),求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,且an=2an﹣1+2n(n≥2,且n∈N*)
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列{an}的前n項(xiàng)之和Sn , 求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,底面ABCD為邊長(zhǎng)為2對(duì)的菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點(diǎn).
(1)判定AE與PD是否垂直,并說(shuō)明理由;
(2)若PA=2,求二面角E﹣AF﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|2x﹣6≤2﹣2x≤1},B={x|x∈A∩N},C={x|a≤x≤a+1}. (Ⅰ)寫出集合B的所有子集;
(Ⅱ)若A∩C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出如下四個(gè)命題: ①若“p∨q”為真命題,則p,q均為真命題;
②“若a>b,則2a>2b﹣1”的否命題為“若a≤b,則2a≤2b﹣1”;
③“x∈R,x2+x≥1”的否定是“x0∈R,x +x0≤1”;
④“x>1”是“x>0”的充分不必要條件.
其中不正確的命題是( )
A.①②
B.②③
C.①③
D.③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com