【題目】與圓C:(x﹣2)2+(y+1)2=4相切于點(4,﹣1)且半徑為1的圓的方程是 .
【答案】(x﹣5)2+(y+1)2=1,或(x﹣3)2+(y+1)2=1
【解析】解:設(shè)所求的圓的圓心為A(a,b),由于C(2,﹣1), 則由題意可得A、C(2,﹣1)和點B(4,﹣1)在同一條直線上,
故有 = ,求得b=﹣1.
再結(jié)合AB=1,可得a=5或a=3,即圓心A(5,﹣1),或A(3,﹣1),
故所求圓的方程為 (x﹣5)2+(y+1)2=1,或(x﹣3)2+(y+1)2=1,
故答案為:(x﹣5)2+(y+1)2=1,或(x﹣3)2+(y+1)2=1.
設(shè)所求的圓的圓心為A(a,b),則由題意可得A、C(2,﹣1)和點B(4,﹣1)在同一條直線上,根據(jù)它們的斜率相等以及AB=1,求得a和b的值,從而求得圓的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)討論的單調(diào)性;
(2)設(shè),當時,,求的最大值;
(3)已知,估計的近似值(精確到0.001)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點,且EH∥FG.求證:
(1)EH∥面BCD;
(2)EH∥BD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面內(nèi)三個向量: =(3,2), =(﹣1,2), =(4,1) (Ⅰ)若( +k )∥(2 ﹣ ),求實數(shù)k的值;
(Ⅱ)設(shè) =(x,y),且滿足( + )⊥( ﹣ ),| ﹣ |= ,求 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}的前n項和Sn=an﹣1,則關(guān)于數(shù)列{an}的下列說法中,正確的個數(shù)有( )
①一定是等比數(shù)列,但不可能是等差數(shù)列
②一定是等差數(shù)列,但不可能是等比數(shù)列
③可能是等比數(shù)列,也可能是等差數(shù)列
④可能既不是等差數(shù)列,又不是等比數(shù)列
⑤可能既是等差數(shù)列,又是等比數(shù)列.
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an=an﹣1+3(n≥2,n∈N*),數(shù)列{bn}滿足bn= ,n∈N* , 則 (b1+b2+…+bn) .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設(shè)曲線與軸正半軸的交點為,曲線在點處的切線方程為,
求證:對于任意的正實數(shù),都有;
(3)若方程為實數(shù))有兩個正實數(shù)根且,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,其離心率為.
(1)求橢圓的方程;
(2)直線與相交于兩點,在軸上是否存在點,使為正三角形,若存在,求直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com