【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)設(shè)曲線軸正半軸的交點為,曲線在點處的切線方程為,

求證:對于任意的正實數(shù),都有;

(3)若方程為實數(shù))有兩個正實數(shù)根,求證: .

【答案】(1)單調(diào)遞增區(qū)間是 ,單調(diào)遞減區(qū)間是;(2)證明見解析;(3)證明見解析.

【解析】試題分析:(1)求出原函數(shù)的導(dǎo)函數(shù),得到導(dǎo)函數(shù)的零點,由零點對定義域分段根據(jù)導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號得到原函數(shù)的單調(diào)性;(2)設(shè)出點的坐標(biāo),利用導(dǎo)數(shù)求出切線方程,構(gòu)造輔助函數(shù),利用導(dǎo)數(shù)得到對于任意實數(shù),,即對任意實數(shù)都有;(3)由(2)知, ,求出方程的根, 單調(diào)遞減,得到,同理得到,根據(jù)不等式性質(zhì)則可證得.

試題解析:(1)由,可得,當(dāng) ,即 時,函數(shù) 單調(diào)遞增;當(dāng) ,即 時,函數(shù) 單調(diào)遞減.所以函數(shù) 的單調(diào)遞增區(qū)間是 ,單調(diào)遞減區(qū)間是.

(2)設(shè) ,則 , 曲線 在點P處的切線方程為 ,即,令.

由于 單調(diào)遞減,故 單調(diào)遞減,又因為,所以當(dāng)時, ,所以當(dāng)時, ,所以單調(diào)遞增,在單調(diào)遞減,所以對任意的實數(shù)x, ,對于任意的正實數(shù),都有.

(3)由(2)知 ,設(shè)方程 的根為 ,可得,因為 單調(diào)遞減,又由(II)知 ,所以 .類似的,設(shè)曲線 在原點處的切線為 可得 ,對任意的,有 .設(shè)方程 的根為 ,可得 ,因為 單調(diào)遞增,且 ,因此, 所以 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】無窮等差數(shù)列{an}的各項均為整數(shù),首項為a1、公差為d,Sn是其前n項和,3、21、15是其中的三項,給出下列命題:
①對任意滿足條件的d,存在a1 , 使得99一定是數(shù)列{an}中的一項;
②存在滿足條件的數(shù)列{an},使得對任意的n∈N* , S2n=4Sn成立;
③對任意滿足條件的d,存在a1 , 使得30一定是數(shù)列{an}中的一項.
其中正確命題的序號為(
A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】與圓C:(x﹣2)2+(y+1)2=4相切于點(4,﹣1)且半徑為1的圓的方程是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=3,an+1+an=32n , n∈N*
(1)證明數(shù)列{an﹣2n}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)在數(shù)列{an}中,是否存在連續(xù)三項成等差數(shù)列?若存在,求出所有符合條件的項;若不存在,請說明理由;
(3)若1<r<s且r,s∈N* , 求證:使得a1 , ar , as成等差數(shù)列的點列(r,s)在某一直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為g(x)(萬元),其中固定成本為2萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本);銷售收入R(x)(萬元)滿足: 假設(shè)該產(chǎn)品產(chǎn)銷平衡,試根據(jù)上述資料分析:
(1)要使工廠有盈利,產(chǎn)量x應(yīng)控制在什么范圍內(nèi);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?
(3)當(dāng)盈利最多時,求每臺產(chǎn)品的售價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且三角形的面積為S= bccosA.
(1)求角A的大小;
(2)若c=8,點D在AC邊上,且CD=2,cos∠ADB=﹣ ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在調(diào)查中學(xué)生是否抽過煙的時候,給出兩個問題作答,無關(guān)緊要的問題是:“你的身份證號碼的尾數(shù)是奇數(shù)嗎?”敏感的問題是:“你抽過煙嗎?”然后要求被調(diào)查的中學(xué)生擲一枚質(zhì)地均勻的骰子一次,如果出現(xiàn)奇數(shù)點,就回答第一個問題,否則回答第二個問題,由于回答哪一個問題只有被測試者自己知道,所以應(yīng)答者一般樂意如實地回答問題,如我們把這種方法用于300個被調(diào)查的中學(xué)生,得到80個“是”的回答,則這群人中抽過煙的百分率大約為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD所在的平面與正方形ADPQ所在的平面相互垂直,E是QD的中點. (Ⅰ)求證:QB∥平面AEC;
(Ⅱ)求證:平面QDC⊥平面AEC;
(Ⅲ)若AB=1,AD=2,求多面體ABCEQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過直線2x+y+5=0與x﹣2y=0的交點,圓C1:x2+y2﹣2x﹣2y﹣4=0與圓C2:x2+y2+6x+2y﹣6=0相較于A、B兩點.
(1)若點P(5,0)到直線l的距離為4,求l的直線方程;
(2)若直線l與直線AB垂直,求直線l方程.

查看答案和解析>>

同步練習(xí)冊答案