(本小題滿分12分)
如圖,在四棱錐P - ABCD中,ΔPCD為等邊三角形,四邊形ABCD為矩形,平面PDC丄平面ABCD,M,N、E分別是AB,PD,PC的中點,AB =2AD.

(I)求證DE丄MN;
(II)求二面角B-PA-D的余弦值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

下列幾何體的三視圖中,有且僅有兩個視圖相同的是     (   )
A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在六面體中,平面∥平面,平面,,,,且,

(1)求證:平面平面
(2)求證:∥平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

正△的邊長為4,邊上的高,分別是邊的中點,現(xiàn)將△沿翻折成直二面角
(1)試判斷直線與平面的位置關(guān)系,并說明理由;
(2)求二面角的余弦值;


 

 
  (3)在線段上是否存在一點,使?證明你的結(jié)論.

 
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分14分)
如圖,平面平面,點E、FO分別為線段PA、PB、AC的中點,點G是線段CO的中點,,.求證:

(1)平面;
(2)∥平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知在四棱錐P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點。
(Ⅰ)求證:AF∥平面PEC;
(Ⅱ)求PC與平面ABCD所成角的正切值;
(Ⅲ)求二面角P一EC一D的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在正方體中,異面直線的夾角的大小為__________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,平面,,,

(Ⅰ)求證:平面平面
(Ⅱ)求二面角的大。
(Ⅲ)求三棱錐的體

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

用一張圓弧長等于  分米,半徑是10分米的扇形膠片制作一個圓錐體模型,這個圓錐體的體積等于_    __立方分米.

查看答案和解析>>

同步練習冊答案