【題目】某城市理論預測2007年到2011年人口總數(shù)與年份的關系如表所示

年份2007+x(年)

0

1

2

3

4

人口數(shù)y(十萬)

5

7

8

11

19


(1)請根據(jù)表提供的數(shù)據(jù),求最小二乘法求出y關于x的線性回歸方程;
(2)據(jù)此估計2012年該城市人口總數(shù).
參考公式:

【答案】
(1)解:∵ ,

故y關于x的線性回歸方程為


(2)解:當x=5時, ,即

據(jù)此估計2012年該城市人口總數(shù)約為196萬


【解析】(1)先求出年份2007+x和人口數(shù)y的平均值,即得到樣本中心點,利用最小二乘法得到線性回歸方程的系數(shù),根據(jù)樣本中心點在線性回歸直線上,得到a的值,得到線性回歸方程;(2)當x=5代入回歸直線方程,即可求得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x),當x∈(﹣∞,0)時,f(x)=﹣x2+mx﹣1.
(1)求f(x)的解析式;
(2)若方程f(x)=0有五個不相等的實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知斜三棱柱, , 在底面上的射影恰為的中點,且.

(1)求證: 平面;

(2)求到平面的距離;

(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列是各項均為正數(shù)的等比數(shù)列,其前項和為,且

(1)求數(shù)列的通項公式;

(2)設有正整數(shù),使得成等差數(shù)列,求的值;

(3)設,對于給定的,求三個數(shù)經(jīng)適當排序后能構成等差數(shù)列的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點D作AC的平行線DE,交BA的延長線于點E.求證:

(1)△ABC≌△DCB;
(2)DEDC=AEBD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓.

(1)若橢圓的離心率為,且點在橢圓上,①求橢圓的方程;

②設分別為橢圓的右頂點和上頂點,直線軸和軸相交于點,求直線的方程;

(2)設 點的直線與橢圓交于兩點,且均在的右側, ,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按/次收費, 并注冊成為會員, 對會員逐次消費給予相應優(yōu)惠,標準如下:

消費次第






收費比例






該公司從注冊的會員中, 隨機抽取了位進行統(tǒng)計, 得到統(tǒng)計數(shù)據(jù)如下:

消費次第






頻數(shù)






假設汽車美容一次, 公司成本為, 根據(jù)所給數(shù)據(jù), 解答下列問題:

1)估計該公司一位會員至少消費兩次的概率;

2)某會員僅消費兩次, 求這兩次消費中, 公司獲得的平均利潤;

3)以事件發(fā)生的頻率作為相應事件發(fā)生的概率, 設該公司為一位會員服務的平均利潤為, 的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高三化學得分訓練的學生中隨機抽出60名學生,將其化學成績(均為整數(shù))分成六段、…、后得到部分頻率分布直方圖(如圖).

觀察圖形中的信息,回答下列問題:

(1)求分數(shù)在內(nèi)的頻率,并補全頻率分布直方圖;

(2)據(jù)此估計本次考試的平均分;

(3)若從60名學生中隨機抽取2人,抽到的學生成績在內(nèi)記0分,在內(nèi)記1分,在內(nèi)記2分,用表示抽取結束后的總記分,求的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=2|xm|﹣1(m為實數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關系為

查看答案和解析>>

同步練習冊答案