【題目】過曲線的左焦點作曲線的切線,設切點為,延長交曲線于點,其中,有一個共同的焦點,若,則曲線的離心率為( )

A. B. C. D.

【答案】A

【解析】

設雙曲線的右焦點的坐標為,利用的中點,的中點,可得的中位線,從而可求,再設,過點軸的垂線,由勾股定理得出關于的關系式,最后即可求得離心率.

設雙曲線的右焦點為,的坐標為

因為曲線有一個共同的焦點,所以曲線的方程為

因為,

所以,

所以的中點,

因為O的中點,

所以OM的中位線,

所以OM

因為|OM|=a,所以

,

所以

N(x,y),則由拋物線的定義可得,

所以

過點F1x軸的垂線,點N到該垂線的距離為,

由勾股定理得,

,

所以,

整理得,解得

故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體 是正方形, 是梯形 , 平面 分別為棱的中點

求證:平面平面;

求平面和平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“海之旅”表演隊在一海濱區(qū)域進行集訓,該海濱區(qū)域的海浪高度(米)隨著時刻而周期性變化.為了了解變化規(guī)律,該團隊觀察若干天后,得到每天各時刻的浪高數(shù)據(jù)的平均值如下表:

0

3

6

9

12

15

18

21

24

1.0

1.4

1.0

0.6

1.0

1.4

0.9

0.6

1.0

(1)從中選擇一個合適的函數(shù)模型,并求出函數(shù)解析式;

(2)如果確定當浪高不低于0.8米時才進行訓練,試安排白天內(nèi)恰當?shù)挠柧殨r間段.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設,農(nóng)村的經(jīng)濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設前后農(nóng)村的經(jīng)濟收入構成比例.得到如下餅圖:

則下面結論中不正確的是

A. 新農(nóng)村建設后,種植收入減少

B. 新農(nóng)村建設后,其他收入增加了一倍以上

C. 新農(nóng)村建設后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟收入的一半

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車站在春運期間為了了解旅客購票情況,隨機調(diào)查了100名旅客從開始在售票窗口排隊到購到車票所用的時間(以下簡稱為購票用時,單位為min),下面是這次調(diào)查統(tǒng)計分析得到的頻率分布表和頻率分布直方圖.

頻率

分組

頻數(shù)

10

0.10

10

0.50

30

0.30

合計

100

1.00

解答下列問題:

1)在表中填寫出缺失的數(shù)據(jù)并補全頻率分布直方圖;

2)估計旅客購票用時的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年某地遭遇嚴重干旱,某鄉(xiāng)計劃向上級申請支援,為上報需水量,鄉(xiāng)長事先抽樣調(diào)查100戶村民的月均用水量,得到這100戶村民月均用水量(單位:t)的頻率分布表如下:

月均用水量分組

頻數(shù)

頻率

12

40

0.18

6

合計

100

1.00

1)請完成該頻率分布表,并畫出相對應的頻率分布直方圖.

2)樣本的中位數(shù)是多少?

3)已知上級將按每戶月均用水量向該鄉(xiāng)調(diào)水,若該鄉(xiāng)共有1200戶,請估計上級支援該鄉(xiāng)的月調(diào)水量是多少噸.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學生進行體育測試,是激發(fā)學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.程度2019年初中畢業(yè)生升學體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:

每分鐘跳繩個數(shù)

得分

17

18

19

20

(Ⅰ)現(xiàn)從樣本的100名學生中,任意選取2人,求兩人得分之和不大于35分的概率;;

(Ⅱ)若該校初三年級所有學生的跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點值代替).根據(jù)往年經(jīng)驗,該校初三年級學生經(jīng)過一年的訓練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步,假設今年正式測試時每人每分鐘跳繩個數(shù)比初三上學期開始時個數(shù)增加10個,現(xiàn)利用所得正態(tài)分布模型:

預計全年級恰有2000名學生,正式測試每分鐘跳182個以上的人數(shù);(結果四舍五入到整數(shù))

若在全年級所有學生中任意選取3人,記正式測試時每分鐘跳195以上的人數(shù)為ξ,求隨機變量的分布列和期望.

附:若隨機變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關于行駛速度(千米/小時)的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.

(1)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?

(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,A、B分別是橢圓的左、右端點,F是橢圓的右焦點,點P在橢圓上,且位于x軸上方,PAPF.

1P的坐標;

2M是橢圓長軸AB上的一點,M到直線AP的距離等于MB,求橢圓上的點到點M的距離d的最小值.

查看答案和解析>>

同步練習冊答案