【題目】如圖,多面體, 是正方形, 是梯形, , , 平面, 分別為棱的中點(diǎn)

求證:平面平面

求平面和平面所成銳二面角的余弦值

【答案】見解析

【解析】試題分析:(1通過證明平面,所以平面平面.(2)建立空間直角坐標(biāo)系,求出平面和平面的法向量,求二面角的余弦值。

試題解析:

, 是正方形

分別為棱的中點(diǎn)

平面,

平面從而

, 中點(diǎn)

平面

平面

所以,平面平面

(Ⅱ)由已知, 兩兩垂直,如圖,建立空間直角坐標(biāo)系設(shè)

, , ,

,

平面的一個(gè)法向量為

由(Ⅰ)可知平面

∴平面的一個(gè)法向量為

設(shè)平面和平面所成銳二面角為,

所以,平面和平面所成銳二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面,且, , 是邊的中點(diǎn).

(1)求證: 平面;

(2)若是線段上的動(dòng)點(diǎn)(不含端點(diǎn)):問當(dāng)為何值時(shí),二面角余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),證明: ;

(2)若關(guān)于的方程有且只有一個(gè)實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù), .

(1)試討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, , .

1)若的充分不必要條件,求實(shí)數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且

1)若為線段的中點(diǎn),求證平面;

2)求三棱錐體積的最大值;

3)若,點(diǎn)在線段上,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中歐班列是推進(jìn)與“一帶一路”沿線國家道路聯(lián)通、貿(mào)易暢通的重要舉措,作為中歐鐵路在東北地區(qū)的始發(fā)站,沈陽某火車站正在不斷建設(shè).目前車站準(zhǔn)備在某倉庫外,利用其一側(cè)原有墻體,建造一間墻高為3米,底面為12平方米,且背面靠墻的長方體形狀的保管員室.由于此保管員室的后背靠墻,無需建造費(fèi)用,因此甲工程隊(duì)給出的報(bào)價(jià)為:屋子前面新建墻體的報(bào)價(jià)為每平方米400元,左右兩面新建墻體報(bào)價(jià)為每平方米150元,屋頂和地面以及其他報(bào)價(jià)共計(jì)7200元.設(shè)屋子的左右兩側(cè)墻的長度均為

(1)當(dāng)左右兩面墻的長度為多少時(shí),甲工程隊(duì)報(bào)價(jià)最低?

(2)現(xiàn)有乙工程隊(duì)也參與此保管員室建造競標(biāo),其給出的整體報(bào)價(jià)為,若無論左右兩面墻的長度為多少米,乙工程隊(duì)都能競標(biāo)成功,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018安徽淮南市高三一模(2月)已知函數(shù)

I,討論函數(shù)的單調(diào)性;

II曲線與直線交于 兩點(diǎn),其中,若直線斜率為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求不等式的解集;

(2)若對(duì)一切,均有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案