【題目】若函數(shù)f(x)= . (a>0且a≠1),函數(shù)g(x)=f(x)﹣k.
①若a= ,函數(shù)g(x)無(wú)零點(diǎn),則實(shí)數(shù)k的取值范圍為
②若f(x)有最小值,則實(shí)數(shù)a的取值范圍是

【答案】[﹣1,1),(1,3]

【分析】由數(shù)形結(jié)合可得①a= 時(shí),畫(huà)出函數(shù)f(x)的圖象,如圖所示:若函數(shù)g(x)無(wú)零點(diǎn),則y=k和y=f(x)無(wú)交點(diǎn),結(jié)合圖象,﹣1≤k<1;
【解析】解:①a= 時(shí),畫(huà)出函數(shù)f(x)的圖象,如圖所示:若函數(shù)g(x)無(wú)零點(diǎn),則y=k和y=f(x)無(wú)交點(diǎn),結(jié)合圖象,﹣1≤k<1;

②若0<a<1,顯然f(x)無(wú)最小值,故a>1,結(jié)合loga3=1,解得:a=3,故a∈(1,3];

所以答案是:[﹣1,1),(1,3].

【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的最值及其幾何意義,需要了解利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍艿贸稣_答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司對(duì)應(yīng)聘人員進(jìn)行能力測(cè)試,測(cè)試成績(jī)總分為150分.下面是30位應(yīng)聘人員的測(cè)試成績(jī)的測(cè)試成績(jī):64,116,82,93,102,82,104,67,93,118,70,95,119,106,83,72,95,106,72,119,122,95,86,74,131,76,88,108,97,123.
(1)求應(yīng)聘人員的測(cè)試成績(jī)的樣本平均數(shù) (保留小數(shù)點(diǎn)后兩位);
(2)根據(jù)以上數(shù)據(jù)完成下面莖葉圖:

應(yīng)聘人員的測(cè)試成績(jī)

6

7

8

9

10

11

12

13


(3)由莖葉圖可以認(rèn)為,應(yīng)聘人員的測(cè)試成績(jī)Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù) ,σ2近似為樣本方差s2 , 其中s2=18.872 , 利用該正態(tài)分布,求P(76.40<Z<114.14).
附:若Z~N(μ,σ2),則P(μ﹣σ<Z<μ+σ)=0.6826,
P(μ﹣2σ<Z<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: 的離心率為 ,F(xiàn)1 , F2分別是它的左、右焦點(diǎn),且存在直線l,使F1 , F2關(guān)于l的對(duì)稱(chēng)點(diǎn)恰好為圓C:x2+y2﹣4mx﹣2my+5m2﹣4=0(m∈R,m≠0)的一條直徑的兩個(gè)端點(diǎn).
(1)求橢圓E的方程;
(2)設(shè)直線l與拋物線y2=2px(p>0)相交于A,B兩點(diǎn),射線F1A,F(xiàn)1B與橢圓E分別相交于點(diǎn)M,N,試探究:是否存在數(shù)集D,當(dāng)且僅當(dāng)p∈D時(shí),總存在m,使點(diǎn)F1在以線段MN為直徑的圓內(nèi)?若存在,求出數(shù)集D;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中, ,O為平面內(nèi)一點(diǎn),且 ,M為劣弧 上一動(dòng)點(diǎn),且
則p+q的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a≠0);命題q:數(shù)列{an}是等差數(shù)列.則p是q的( 。
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: + =1(a>b>0)的離心率為 ,四邊形ABCD的各頂點(diǎn)均在橢圓E上,且對(duì)角線AC,BD均過(guò)坐標(biāo)原點(diǎn)O,點(diǎn)D(2,1),AC,BD的斜率之積為
(Ⅰ)求橢圓E的方程;
(Ⅱ)過(guò)D作直線l平行于AC.若直線l′平行于BD,且與橢圓E交于不同的兩點(diǎn)M.N,與直線l交于點(diǎn)P.
⑴證明:直線l與橢圓E有且只有一個(gè)公共點(diǎn);
⑵證明:存在常數(shù)λ,使得|PD|2=λ|PM||PN|,并求出λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著網(wǎng)絡(luò)營(yíng)銷(xiāo)和電子商務(wù)的興起,人們的購(gòu)物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購(gòu)物者進(jìn)行采訪,5名男性購(gòu)物者中有3名傾向于選擇網(wǎng)購(gòu),2名傾向于選擇實(shí)體店,5名女性購(gòu)物者中有2名傾向于選擇網(wǎng)購(gòu),3名傾向于選擇實(shí)體店.
(1)若從10名購(gòu)物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購(gòu)物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購(gòu)的男性購(gòu)物者的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,首項(xiàng) ,前n項(xiàng)和為Sn , 且
(1)求數(shù)列{an}的通項(xiàng)
(2)如果bn=3(n+1)×2nan , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓 的離心率為 ,其左焦點(diǎn)到點(diǎn) 的距離為 .不過(guò)原點(diǎn) 的直線 相交于 兩點(diǎn),且線段 被直線 平分.

(1)求橢圓 的方程;
(2)求 的面積取最大值時(shí)直線 的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案