【題目】命題p:數(shù)列{an}的前n項和Sn=an2+bn+c(a≠0);命題q:數(shù)列{an}是等差數(shù)列.則p是q的(  )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

【答案】D
【解析】解:當(dāng)n≥2時,an=Sn﹣Sn﹣1=an2+bn+c﹣[a(n﹣1)2+b(n﹣1)+c]=an2+bn+c﹣a(n﹣1)2﹣b(n﹣1)﹣c=2an+a+b,

當(dāng)n=1時,a1=S1=a+b+c不滿足an=2an+a+b,

則an= ,則數(shù)列{an}不是等差數(shù)列,即充分性不成立,

若{an}是等差數(shù)列,當(dāng)d=0時,則Sn=na1,不滿足Sn=an2+bn+c(a≠0),即必要性不成立,

即p是q的既不充分也不必要條件,

故答案選:D

由數(shù)列遞推可得證數(shù)列{an}不是等差數(shù)列,即充分性不成立,

若{an}是等差數(shù)列,當(dāng)d=0時,則Sn=na1,不滿足Sn=an2+bn+c(a≠0),即必要性不成立,即p是q的既不充分也不必要條件

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在(0, )上無零點,求a最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=(x+1)ex則對任意的m∈R,函數(shù)F(x)=f(f(x))﹣m的零點個數(shù)至多有(  )
A.3個
B.4個
C.6個
D.9個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標(biāo)系的原點O為極點,x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位,已知直線l的參數(shù)方程為 ,(t為參數(shù),0<θ<π),曲線C的極坐標(biāo)方程為ρsin2α﹣2cosα=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A,B兩點,當(dāng)θ變化時,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運而生.某市場研究人員為了了解共享單車運營公司M的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,并繪制了相應(yīng)的折線圖.

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合月度市場占有率y與月份代碼x之間的關(guān)系.求y關(guān)于x的線性回歸方程,并預(yù)測M公司2017年4月份的市場占有率;
(Ⅱ)為進一步擴大市場,公司擬再采購一批單車.現(xiàn)有采購成本分別為1000元/輛和1200元/輛的A、B兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導(dǎo)致車輛報廢年限各不相同.考慮到公司運營的經(jīng)濟效益,該公司決定先對兩款車型的單車各100輛進行科學(xué)模擬測試,得到兩款單車使用壽命頻數(shù)表如下:

報廢年限
車型

1年

2年

3年

4年

總計

A

20

35

35

10

100

B

10

30

40

20

100

經(jīng)測算,平均每輛單車每年可以帶來收入500元.不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整數(shù)年,且以頻率作為每輛單車使用壽命的概率.如果你是M公司的負責(zé)人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款車型?
參考數(shù)據(jù):, , =17.5.
參考公式:
回歸直線方程為 其中 = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= . (a>0且a≠1),函數(shù)g(x)=f(x)﹣k.
①若a= ,函數(shù)g(x)無零點,則實數(shù)k的取值范圍為;
②若f(x)有最小值,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】美索不達米亞平原是人類文明的發(fā)祥地之一.美索不達米亞人善于計算,他們創(chuàng)造了優(yōu)良的計數(shù)系統(tǒng),其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運算都精確到小數(shù)點后兩位)則輸出結(jié)果為(
A.2.81
B.2.82
C.2.83
D.2.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:今有芻童,下廣三丈,袤四丈,上袤二丈,無廣,高一丈,問:積幾何?其意思是說:“今有底面為矩形的屋脊?fàn)钚w,下底面寬3丈,長4丈;上棱長2丈,高一丈.問它的體積是多少?”已知一丈為10尺,現(xiàn)將該楔體的三視圖給出如右圖所示,其中網(wǎng)格紙上小正方形的邊長為1,則該楔體的體積為( 。

A.5000立方尺
B.5500立方尺
C.6000立方尺
D.6500立方尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .
(1)設(shè) ,若曲線 處的切線很過定點 ,求 的坐標(biāo);
(2)設(shè) 的導(dǎo)函數(shù),當(dāng) 時, ,求 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案