【題目】已知函數(shù)f(x)= (a∈R)是奇函數(shù). (Ⅰ)求a的值;
(Ⅱ)求證:函數(shù)f(x)在(0, ]上單調(diào)遞增.

【答案】(Ⅰ)解:由題意,f(0)= =0,∴a=0;

(Ⅱ)證明:f(x)= ,

∴x∈(0, ],f′(x)= >0,

∴函數(shù)f(x)在(0, ]上單調(diào)遞增.


【解析】(Ⅰ)利用f(0)=0,即可求a的值;(Ⅱ)x∈(0, ],f′(x)= >0,即可證明函數(shù)f(x)在(0, ]上單調(diào)遞增.
【考點精析】關(guān)于本題考查的函數(shù)單調(diào)性的判斷方法和奇偶性與單調(diào)性的綜合,需要了解單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較;奇函數(shù)在關(guān)于原點對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點對稱的區(qū)間上有相反的單調(diào)性才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是首項為正數(shù)的等差數(shù)列,a1a2=3,a2a3=15.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(an+1)2 ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記所有非零向量構(gòu)成的集合為V,對于 , ∈V, ,定義V( , )=|x∈V|x =x |
(1)請你任意寫出兩個平面向量 , ,并寫出集合V( , )中的三個元素;
(2)請根據(jù)你在(1)中寫出的三個元素,猜想集合V( , )中元素的關(guān)系,并試著給出證明;
(3)若V( )=V( , ),其中 ,求證:一定存在實數(shù)λ1 , λ2 , 且λ12=1,使得 1 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對于函數(shù)f(x)的定義域中任意的x1 , x2(x1≠x2),恒有 成立,則稱函數(shù)f(x)為“單凸函數(shù)”,下列有四個函數(shù):
(1)y=2x;(2)y=lgx;(3) ;(4)y=x2
其中是“單凸函數(shù)”的序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y= 的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,an=﹣4n+5,等比數(shù)列{bn}的公比q滿足q=an﹣an1(n≥2),且b1=a2 , 則|b1|+|b2|+…+|bn|=(
A.1﹣4n
B.4n﹣1
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中, , ,且△ABC的周長為
(1)求點A的軌跡方程C;
(2)過點P(2,1)作曲線C的一條弦,使弦被這點平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (2x﹣2﹣x)(a>0,且a≠1).
(1)判斷函數(shù)f(x)的奇偶性和單調(diào)性,并說明理由;
(2)當x∈(﹣1,1)時,總有f(m﹣1)+f(m)<0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若在定義域內(nèi)存在實數(shù)x0使得f(x0+1)=f(x0)+f(1)成立則稱函數(shù)f(x)有“溜點x0
(1)若函數(shù) 在(0,1)上有“溜點”,求實數(shù)m的取值范圍;
(2)若函數(shù)f(x)=lg( )在(0,1)上有“溜點”,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案