某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
由散點(diǎn)圖可知,銷售量與價(jià)格之間有較好的線性相關(guān)關(guān)系,其線性回歸直線方程是;
(1)求的值;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從線性回歸直線方程中的關(guān)系,且該產(chǎn)品的成本是每件4元,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入一成本)
(1);(2)當(dāng)單價(jià)定為8.25元時(shí),工廠可獲得最大利潤(rùn).
解析試題分析:(1)分別求出,,代入回歸直線方程中,可求出參數(shù),進(jìn)而求出回歸直線方程;(2)設(shè)工廠獲得的利潤(rùn)為元,依題意得:,由此能求出當(dāng)單價(jià)定為8.25元時(shí),工廠可獲得最大利潤(rùn).
試題解析:(1)由于,.
所以.即所求回歸方程為.
(2)設(shè)工廠獲得的利潤(rùn)為元,依題意得:
.
當(dāng)且僅當(dāng)時(shí),取得最大值.故當(dāng)單價(jià)定為8.25元時(shí),工廠可獲得最大利潤(rùn).
考點(diǎn):回歸分析的初步應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月 1日 | 12月 2日 | 12月 3日 | 12月 4日 | 12月 5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽y(顆) | 23 | 25 | 30 | 26 | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
由散點(diǎn)圖可知,銷售量與價(jià)格之間有較好的線性相關(guān)關(guān)系,其線性回歸直線方程是;
(1)求的值;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價(jià)仍然服從線性回歸直線方程中的關(guān)系,且該產(chǎn)品的成本是每件4元,為使工廠獲得最大利潤(rùn),該產(chǎn)品的單價(jià)應(yīng)定為多少元?(利潤(rùn)=銷售收入一成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某高校共有學(xué)生15 000人,其中男生10 500人,女生4 500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4], (4,6], (6,8], (8,10], (10,12],估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí)的概率;
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
附:
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某校在高二年級(jí)開設(shè)了,,三個(gè)興趣小組,為了對(duì)興趣小組活動(dòng)的開展情況進(jìn)行調(diào)查,用分層抽樣方法從,,三個(gè)興趣小組的人員中,抽取若干人組成調(diào)查小組,有關(guān)數(shù)據(jù)見下表(單位:人)
興趣小組 | 小組人數(shù) | 抽取人數(shù) |
12 | ||
36 | 3 | |
48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
我市某高中的一個(gè)綜合實(shí)踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)(個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖所示:
將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另一天的日銷售量低于50個(gè)的概率;
(2)用X表示在未來3天里日銷售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望及方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以下莖葉圖記錄了甲,乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績(jī)(十位數(shù)字為莖,個(gè)位數(shù)字為葉).乙組記錄中有一個(gè)數(shù)字模糊,無法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以表示.
(1)若甲,乙兩個(gè)小組的數(shù)學(xué)平均成績(jī)相同,求的值;
(2)當(dāng)時(shí),分別從甲,乙兩組同學(xué)中各隨機(jī)選取一名同學(xué),求這兩名同學(xué)的數(shù)學(xué)成績(jī)之差的絕對(duì)值不超過2分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
一個(gè)公司共有1 000名員工,下設(shè)一些部門,要采用分層抽樣方法從全體員工中抽取一個(gè)容量為50的樣本,已知某部門有200名員工,那么從該部門抽取的工人數(shù)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com