【題目】已知集合函數(shù),函數(shù)的值域為,
(1)若不等式的解集為,求的值;
(2)在(1)的條件下,若恒成立,求的取值范圍;
(3)若關(guān)于的不等式的解集,求實數(shù)的值
【答案】(1);(2);(3)
【解析】
(1)解一元二次不等式求得集合.根據(jù)絕對值不等式的解法,化簡,對進(jìn)行分類討論,結(jié)合不等式的解集為,求得的值.
(2)利用絕對值不等式,求得的最大值,由此求得的取值范圍.
(3)利用的值域和判別式的關(guān)系,得出的關(guān)系式,結(jié)合一元二次不等式的解法、韋達(dá)定理列方程組,解方程組求得的值.
(1)由得,所以.故.由,即,.
若,則的解集為,不為集合,不符合題意。
若,則,所以,解得。
若,則,所以,無解。
綜上所述,的值為.
(2),所以的最大值為,所以,即的取值范圍是.
(3)由的值域為得:.由得,不等式的解集為,根據(jù)韋達(dá)定理有,解得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線經(jīng)過曲線的焦點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項和為,若對任意正整數(shù)n,總存在正整數(shù)m,使得,則稱是“H數(shù)列”;
(1)若數(shù)列的前n項和(),判斷數(shù)列是否是“H數(shù)列”?若是,給出證明;若不是,說明理由;
(2)設(shè)數(shù)列是常數(shù)列,證明:為“H數(shù)列”的充要條件是;
(3)設(shè)是等差數(shù)列,其首項,公差,若是“H數(shù)列”,求d的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆重慶十一中高三12月月考第16題) 現(xiàn)介紹祖暅原理求球體體積公式的做法:可構(gòu)造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點(diǎn),圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應(yīng)用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎(chǔ)上,解答以下問題:已知橢圓的標(biāo)準(zhǔn)方程為 ,將此橢圓繞y軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,其中m是不等于零的常數(shù).
(1)時,直接寫出的值域;
(2)求的單調(diào)遞增區(qū)間;
(3)已知函數(shù),,定義:,,,,其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.例如:,,則,,,.當(dāng)時,恒成立,求n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)是函數(shù)數(shù)的導(dǎo)函數(shù),記,若在區(qū)間上為單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)設(shè)實數(shù),求證:對任意實數(shù),總有成立.
附:簡單復(fù)合函數(shù)求導(dǎo)法則為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若動點(diǎn)到定點(diǎn)與定直線的距離之和為4.
(1)求點(diǎn)的軌跡方程,并畫出方程的曲線草圖.
(2)記(1)得到的軌跡為曲線,若曲線上恰有三對不同的點(diǎn)關(guān)于點(diǎn)對稱,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com