數列的各項均為正數,為其前項和,對于任意,總有成等差數列.
(Ⅰ)求數列的通項公式;
(Ⅱ)設,數列的前項和為,求證:.
科目:高中數學 來源: 題型:解答題
已知數列的前項和為,滿足,且依次是等比數列的前兩項。
(1)求數列及的通項公式;
(2)是否存在常數且,使得數列是常數列?若存在,求出的值;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知數列{ an}的前n項和為Sn,且Sn=2an-l;數列{bn}滿足bn-1=bn=bnbn-1(n≥2,n∈N*)b1=1.
(Ⅰ)求數列{an},{bn}的通項公式;
(Ⅱ)求數列的前n項和T.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知點是區(qū)域,()內的點,目標函數,的最大值記作.若數列的前項和為,,且點()在直線上.
(Ⅰ)證明:數列為等比數列;
(Ⅱ)求數列的前項和.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
等比數列中,,,分別是下表第一、二、三行中的某一個數,且,,中的任何兩個數不在下表的同一列.
| 第一列 | 第二列 | 第三列 |
第一行 | 3 | 2 | 10 |
第二行 | 6 | 4 | 14 |
第三行 | 9 | 8 | 18 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)已知f (x)=mx(m為常數,m>0且m≠1).設f (a1),f (a2),…,f (an),…(n∈N)是首項為m2,公比為m的等比數列.
(1)求證:數列{an}是等差數列;
(2)若bn=an f (an),且數列{bn}的前n項和為Sn,當m=3時,求Sn;
(3)若cn= f(an) lg f (an),問是否存在m,使得數列{cn}中每一項恒不小于它后面的項?若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com