(本小題滿分14分)已知f (x)=mx(m為常數(shù),m>0且m≠1).設(shè)f (a1),f (a2),,f (an),(n∈N)是首項(xiàng)為m2,公比為m的等比數(shù)列.
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若bnan f (an),且數(shù)列{bn}的前n項(xiàng)和為Sn,當(dāng)m=3時(shí),求Sn;
(3)若cnf(an) lg f (an),問(wèn)是否存在m,使得數(shù)列{cn}中每一項(xiàng)恒不小于它后面的項(xiàng)?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{a}滿足a=2a+aa,且a+a=2a+4,其中n∈N.
(Ⅰ)若b=,求數(shù)列{b}的通項(xiàng)公式;
(Ⅱ)證明:++…+>(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對(duì)于任意,總有成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列{an}中,a1=1,an+1=  (n∈N*).
(Ⅰ)求a2, a3,  a4;
(Ⅱ)猜想an,并用數(shù)學(xué)歸納法證明;
(Ⅲ)若數(shù)列bn= ,求數(shù)列{bn}的前n項(xiàng)和sn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列{an}中,已知a1=1,a2=3,an+2= 3an+1- 2an.
(1)證明數(shù)列{ an+1- an}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=,{bn}的前n項(xiàng)和為Sn,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

數(shù)列的一個(gè)通項(xiàng)公式為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè)數(shù)列的前n項(xiàng)和,則的值為(    ).

A.15 B.16 C.49 D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

各項(xiàng)均為正數(shù)的數(shù)列,滿足:,,,那么(    )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

一函數(shù)y=f(x)的圖象在給定的下列圖象中,并且對(duì)任意an∈(0,1),由關(guān)系式an+1=f(an)得到的數(shù)列{an}滿足an+1>an(n∈N*),則該函數(shù)的圖象是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案